Skip to main content
Log in

Reaction mechanisms of carbon dioxide methanation

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Constant increase of carbon dioxide emissions from anthropogenic activities leads to the search of options for its recycling and utilization. Although recycled CO2 utilization as a raw material for the production of chemicals and propellants can be challenging, it is the most sustainable way to mitigate its emissions. Among the most promising applications of CO2 is its catalytic fixation with hydrogen via the methanation reaction to methane. CO2 methanation, depending on the used catalyst and overall reaction conditions, can proceed through different mechanism or pathways. A literature review on the methanation reaction mechanism shows that CO2 can be converted to methane either by direct methanation or through the formation of a CO intermediate. This article analyses the proposed reaction mechanisms of CO2 methanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelló, S., Berrueco, C., & Montané, D. (2013). High-loaded nickel—alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG). Fuel, 113, 598–609. DOI: 10.1016/j.fuel.2013.06.012.

    Article  Google Scholar 

  • Altenbuchner, P. T., Kissling, S., & Rieger, B. (2014). Carbon dioxide as C-1 block for the synthesis of polycarbonates. In B. M. Bhanage, & M. Arai (Eds.), Transformation and utilization of carbon dioxide (pp. 163–200). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-44988-8_7.

    Chapter  Google Scholar 

  • Andersson, M. P., Abild-Pedersen, F., Remediakis, I. N., Bligaard, T., Jones, G., Engbæk, J., Lytken, O., Horch, S., Nielsen, J. H., Sehested, J., Rostrup-Nielsen, J. R., Nørskov, J. K., & Chorkendorff, I. (2008) Structure sensitivity of the methanation reaction: H2-Induced CO dissociation on nickel surfaces. Journal of Catalysis, 255, 6—19. DOI: 10.1016/j.jcat.2007.12.016.

  • Aziz, M. A. A., Jalil, A. A., Triwahyono, S., Mukti, R. R., Taufiq-Yap, Y. H., & Sazegar, M. R. (2014a). Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B, 147, 359–368. DOI: 10.1016/j.apcatb.2013.09.015.

    Article  CAS  Google Scholar 

  • Aziz, M. A. A., Jalil, A. A., Triwahyono, S., & Sidik, S. M. (2014b). Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles. Applied Catalysis A, 486, 115–122. DOI: 10.1016/j.apcata.2014.08.022.

    Article  CAS  Google Scholar 

  • Barrault, J., & Alouche, A. (1990). Isotopic exchange mea-surements of the rate of interconversion of carbon monox-ide and carbon dioxide over nickel supported on rare earth oxides. Applied Catalysis, 58, 255–267. DOI: 10.1016/s0166-9834(00)82294-0.

    Article  CAS  Google Scholar 

  • Beuls, A., Swalus, C., Jacquemin, M., Heyen, G., Karelovic, A., & Ruiz, P. (2014). Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst. Applied Catalysis B, 113-114, 2–10. DOI: 10.1016/j.apcatb.2011.02.033.

    Article  Google Scholar 

  • Borgschulte, A., Galladant, N., Probst, B., Suter, R., Callini, E., Ferri, D., Arroyo, Y., Erni, R., Geerlings, H., & Züttel, A. (2013). Sorption enhanced CO2 methanation. Physical Chemistry Chemical Physics, 15, 9620–9625. DOI: 10.1039/c3cp51408k.

    Article  CAS  Google Scholar 

  • Brooks, K. P., Hu, J. L., Zhu, H. Y., & Kee, R. J. (2007). Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chemical Engineering Science, 62, 1161–1170. DOI: 10.1016/j.ces.2006.11. 020.

    Article  CAS  Google Scholar 

  • Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104, 18866–18870. DOI: 10.1073/pnas.0702737104.

    Article  CAS  Google Scholar 

  • Centi, G., & Perathoner, S. (2009). Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 148, 191–205. DOI: 10.1016/j.cattod.2009.07.075.

    Article  CAS  Google Scholar 

  • Chang, F. W., Hsiao, T. J., Chung, S. W., & Lo, J. J. (1997). Nickel supported on rice husk ash — activity and selectivity in CO2 methanation. Applied Catalysis A, 164, 225–236. DOI: 10.1016/s0926-860x(97)00173-7.

    Article  CAS  Google Scholar 

  • Coenen, J. W. E., van Nisselrooy, P. F. M. T., de Croon, M. H. J. M., van Dooren, P. F. H. A., & van Meerten, R. Z. C. (1986). The dynamics of methanation of carbon monoxide on nickel catalysts. Applied Catalysis, 25, 1–8. DOI: 10.1016/s0166-9834(00)81215-4.

    Article  CAS  Google Scholar 

  • Darensbourg, D. J., Holtcamp, M. W., Struck, G. E., Zimmer, M. S., Niezgoda, S. A., Rainey, P., Robertson, J. B., Draper, J. D., & Reibenspies, J. H. (1999). Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epox-ides and carbon dioxide. Journal of the American Chemical Society, 121, 107–116. DOI: 10.1021/ja9826284.

    Article  CAS  Google Scholar 

  • Ding, X., de Rogatis, L., Vesselli, E., Baraldi, A., Comelli, G., Rosei, R., Savio, L., Vattuone, L., Rocca, M., Fornasiero, P., Ancilotto, F., Balderschi, A., & Peressi, M. (2007). Interaction of carbon dioxide with Ni(110): A combined experimental and theoretical study. Physical Review B, 76, 195–425. DOI: 10.1103/physrevb.76.195425.

    Google Scholar 

  • Eckle, S., Anfang, H. G., & Behm, R. J. (2011). Reaction inter-mediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. The Journal of Physical Chemistry C, 115, 1361–1367. DOI: 10.1021/jp108106t.

    Article  CAS  Google Scholar 

  • Edwards, J. H. (1995). Potential sources of CO2 and the options for its large-scale utilisation now and in the future. Catalysis Today, 23, 59–66. DOI: 10.1016/0920-5861(94)00081-c.

    Article  CAS  Google Scholar 

  • Falconer, J. L., & Zagli, A. E. (1980). Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catlaysis, 62, 280–285. DOI: 10.1016/0021-9517(80)90456-x.

    Article  CAS  Google Scholar 

  • Gao, J. J., Wang, Y. L., Ping, Y., Hu, D. C., Xu, G. W., Gu, F. N., & Su, F. B. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2, 2358–2368. DOI: 10.1039/c2ra00632d.

    Article  CAS  Google Scholar 

  • Goguet, A., Burch, R., Chen, Y., Hardacre, C., Hu, P., Joyner, R. W., Meunier, F. C., Mun, B. S., Thompsett, A., & Tibiletti, D. (2007). Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction. The Journal of Physical Chemistry C, 111, 16927–16933. DOI: 10.1021/jp0743976.

    Article  CAS  Google Scholar 

  • Graça, I., González, L. V., Bacariza, M. C., Fernandes, A., Henriques, C., Lopes, J. M., & Ribeiro, M. F. (2014). CO2 hydro-genation into CH4 on NiHNaUSY zeolites. Applied Catalysis B, 147, 101–110. DOI: 10.1016/j.apcatb.2013.08.010.

    Article  Google Scholar 

  • Gustavsson, L., Börjesson, P., Johansson, B., & Svenningsson, P. (1995). Reducing CO2 emissions by substituting biomass for fossil fuels. Energy, 20, 1097–1113. DOI: DOI: 10.1016/0360-5442(95)00065-o.

    Article  CAS  Google Scholar 

  • Henderson, M. A., & Worley, S. D. (1985). An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts. The Journal of Physical Chemistry, 89, 1417–1423. DOI: 10.1021/j100254a023.

    Article  CAS  Google Scholar 

  • Herzog, H. J. (2011). Scaling up carbon dioxide capture and storage: From megatons to gigatons. Energy Economics, 33, 597–604. DOI: 10.1016/j.eneco.2010.11.004.

    Article  Google Scholar 

  • Hoekman, S. K., Broch, A., Robbins, C., & Purcell, R. (2010). CO2 recycling by reaction with renewably-generated hydrogen. Interantionla Journal of Greenhouse Gas Control, 4, 44–50. DOI: 10.1016/j.ijggc.2009.09.012.

    Article  CAS  Google Scholar 

  • Holladay, J. D., Brooks, K. P., Wegen, R., Hu, J. L., Sanders, J., & Baird, S. (2007). Microreactor development for Martian in situ propellant production. Catalysis Today, 120, 35–44. DOI: 10.1016/j.cattod.2006.07.019.

    Article  CAS  Google Scholar 

  • Hu, J. L., Brooks, K. P., Holladay, J. D., Howe, D. T., & Simon, T. M. (2007). Catalyst development for microchannel reactors for martian in situ propellant production. Catalysis Today, 125, 103–110. DOI: 10.1016/j.cattod.2007.01.067.

    Article  CAS  Google Scholar 

  • International Energy Agency (2014). World energy outlook 2014. Executive summary. Retrieved March 2, 2015, from http://www.iea.org/Textbase/npsum/WEO2014SUM.pdf

    Google Scholar 

  • Jacquemin, M., Beuls, A., & Ruiz, P. (2010). Catalytic production of methane from CO2 and H2 at low temperature: In-sight on the reaction mechanism. Catalysis Today, 157, 462–466. DOI: 10.1016/j.cattod.2010.06.016.

    Article  CAS  Google Scholar 

  • Jürgensen, L., Ehimen, E. A., Born, J., & Holm-Nielsen, J. B. (2015). Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation. Bioresource Technology, 178, 323–329. DOI: 10.1016/j.biortech.2014.10.069.

    Article  Google Scholar 

  • Karelovic, A., & Ruiz, P. (2012). CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism. Applied Catalysis B, 113-114, 237–249. DOI: 10.1016/j.apcatb.2011.11.043.

    Article  CAS  Google Scholar 

  • Karn, F. S., Shultz, J. F., & Anderson, R. B. (1965). Hydrogena-tion of carbon monoxide and carbon dioxide on supported ruthenium catalysts at moderate pressures. Industrial & En-gineering Chemistry Product Research and Development, 4, 265–269. DOI: 10.1021/i360016a014.

    Article  CAS  Google Scholar 

  • Kim, H. Y., Lee, H. M., & Park, J. N. (2010). Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: Indipendent roles of MgO and Pd on CO2 methanation. The Journal of Physical Chemistry C, 114, 7128–7131. DOI: 10.1021/jp100938v.

    Article  CAS  Google Scholar 

  • Klissurski, D., Uzunova, E., & Ivanov, K. (1992). Binary spinel cobaltites of nickel, copper and zinc as precursors of catalysts for carbon oxides methanation. Catalysis Letters, 15, 385–391. DOI: 10.1007/bf00769162.

    Article  Google Scholar 

  • Klose, J., & Baerns, M. (1984). Kinetics of the methanation of carbon monoxide on an alumina-supported nickel cata-lyst. Journal of Catalysis, 85, 105–116. DOI: 10.1016/0021-9517(84)90114-3.

    Article  CAS  Google Scholar 

  • Koci, K., Obalova, L., & Lacnÿ, Z. (2008). Photocatalytic reduction of CO2 over TiO2 based catalysts. Chemical Papers, 62, 1–9. DOI: 10.2478/s11696-007-0072-x.

    Article  CAS  Google Scholar 

  • Lapidus, A. L., Gaiadai, N. A., Nekrasov, N. V., Tishkova, L. A., Agafonov, Y. A., & Myshenkova, T. N. (2007). The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry, 47, 75–82. DOI: 10.1134/s0965544107020028.

    Article  Google Scholar 

  • Marwood, M., Doepper, R., & Renken, A. (1997). In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2. Applied Catalysis A, 151, 223–246. DOI: 10.1016/s0926-860x(96)00267-0.

    Article  CAS  Google Scholar 

  • Mills, G. A., & Steffgen, F. W. (1974). Catalytic methanation. Catalysis Reviews, 8, 159–210. DOI: 10.1080/0161494740807 1860.

    Article  Google Scholar 

  • Pan, Q. S., Peng, J. X., Wang, S., & Wang, S. D. (2014a). In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ceo.5Zro.5O2. Catalysis Science & Technology, 4, 502–509. DOI: 10.1039/c3cy00868a.

    Article  CAS  Google Scholar 

  • Pan, Q. S., Peng, J. X., Sun, T. K., Gao, D. N., Wang, S., & Wang, S. D. (2014b). CO2 methanation on Ni/Ce0.5Zro.5O2 catalysts for the production of synthetic natural gas. Fuel Processing Technology, 123, 166–171. DOI: 10.1016/j.fuproc. 2014.01.004.

    Article  CAS  Google Scholar 

  • Pan, Q. S., Peng, J. X., Sun, T. J., Wang, S., & Wang, S. D. (2014c). Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catalysis Communications, 45, 74–78. DOI: 10.1016/j.catcom.2013.10.034.

    Article  Google Scholar 

  • Peebles, D. E., Goodman, D. W., & White, J. M. (1983). Methanation of carbon dioxide on nickel(100) and the effects of surface modifiers. The Journal of Physical Chemistry, 87, 4378–4387. DOI: 10.1021/j100245a014.

    Article  CAS  Google Scholar 

  • Sabatier, P., & Senderens, J. B. (1902). Nouvelles syntheses du methane. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 134, 514–516. (in French)

    CAS  Google Scholar 

  • Sato, S., Arai, T., Morikawa, T., Uemura, K., Suzuki, T. M., Tanaka, H., & Kajino, T. (2011). Selective CO2 conver-sion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. Journal of the American Chemical Society, 133, 15240–15243. DOI: 10.1021/ja204881d.

    Article  CAS  Google Scholar 

  • Schild, C., Wokaun, A., Koeppel, R. A., & Baiker, A. (1991). Carbon dioxide hydrogenation over nickel/zirconia catalysts from amorphous precursors: On the mechanism of methane formation. The Journal of Physical Chemistry, 95, 6341–6346. DOI: 10.1021/j100169a049.

    Article  CAS  Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F. X., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. H. (2008). Use of U.S. croplands for biofuels increases green-house gases through emissions from land-use change. Science, 319, 1238–1240. DOI: 10.1126/science.1151861.

    Article  CAS  Google Scholar 

  • Sharma, S., Hu, Z. P., Zhang, P., McFarland, E. W., & Metiu, H. (2011). CO2 methanation on Ru-doped ceria. Journal of Catalysis, 278, 297–309. DOI: 10.1016/j.jcat.2010.12.015.

    Article  CAS  Google Scholar 

  • Solymosi, F., Erdühelyi, A., & Kocsis, M. (1981a). Methanation of CO2 on supported Ru catalysts. Journal of the Chemical Society, Faraday Transactions 1,77, 1003–1012. DOI: 10.1039/f19817701003.

    Article  Google Scholar 

  • Solymosi, F., Erdohelyi, A., & Bansagi, T. (1981b). Methanation of CO2 on supported rhodium catalyst. Journal of Catalysis, 68, 371–382. DOI: 10.1016/0021-9517(81)90106-8.

    Article  CAS  Google Scholar 

  • Song, C. S. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115, 2–32. DOI: 10.1016/j.cattod.2006.02.029.

    Article  CAS  Google Scholar 

  • Tada, S., Shimizu, T., Kameyama, H., Haneda, T., & Kikuchi, R. (2012). Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Inter-national Journal of Hydrogen Energy, 37, 5527–5531. DOI: 10.1016/j.ijhydene.2011.12.122.

    Article  CAS  Google Scholar 

  • Tada, S., Ochieng, O. J., Kikuchi, R., Haneda, T., & Kameyama, H. (2014). Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. International Journal of Hydrogen Energy, 39, 10090–10100. DOI: 10.1016/j.ijhydene.2014.04.133.

    Article  CAS  Google Scholar 

  • Takanabe, K., Nagaoka, K., Nariai, K., & Aika, K. (2005). Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. Journal of Catalysis, 232, 268–275. DOI: 10.1016/j.jcat.2005.03.011.

    Article  CAS  Google Scholar 

  • Tilley, J. (1993). IEA carbon dioxide disposal symposium Oxford, United Kingdom 29th–31st March 1993 IEA per-spectives on global climate change issues. Energy Con-version and Managment, 34, 711–718. DOI: 10.1016/0196-8904(93)90012-y.

    Article  Google Scholar 

  • Trovarelli, A., Deleitenburg, C., Dolcetti, G., & Lorca, J. L. (1995). CO2 Methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: The role of surface and bulk ceria. Journal of Catalysis, 151, 111–124. DOI: 10.1006/jcat. 1995.1014.

    Article  CAS  Google Scholar 

  • Tsuji, M., Kato, H., Kodama, T., Chang, S. G., Hesegawa, N., & Tamaura, Y. (1994). Methanation of CO2 on H2-reduced Ni(II)-or Co(II)-bearing ferrites at 200 °C. Journal of Mate-rials Science, 29, 6227–6230. DOI: 10.1007/bf00354564.

    Article  CAS  Google Scholar 

  • Tsuji, M., Kodama, T., Yochida, T., Kitayama, Y., & Tamaura, Y. (1996). Preparation and CO2 methanation activity of an ultrafine Ni(II) ferrite catalyst. Journal of Catalysis, 164, 315–321. DOI: 10.1006/jcat.1996.0387.

    Article  CAS  Google Scholar 

  • U.S. Energy Information Administration (2015). International energy statistics. Retrieved March 2, 2015, from http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=90&pid=44&aid=8&cid=ww,&syid=1980&eyid=2012&unit=MMTCD

    Google Scholar 

  • Ussa Aldana, P. A., Ocampo, F., Kobl, K., Louis, B., Thibault-Starzyk, F., Daturi, M., Bazin, P., Thomas, S., & Roger, A. C. (2013). Catalytic CO2 valorization into CH4 on Nibased ceriazirconia. Reaction mechanism by operando IR spectroscopy. Catalysis Today, 215, 201–207. DOI: 10.1016/j. cattod.2013.02.019.

    Article  Google Scholar 

  • Vesselli, E., De Rogatis, L., Ding, X. L., Baraldi, A., Savio, L., Vattuone, L., Rocca, M., Fornasiero, P., Peressi, M., Baldereschi, A., Rosei, R., & Comelli, G. (2008). Carbon dioxide hydrogenation on Ni(110). Journal of the American Chemical Society, 130, 11417–11422. DOI: 10.1021/ja8025 54g.

    Article  CAS  Google Scholar 

  • Wang, S. B., Lu, G. Q. M., & Millar, G. J. (1996). Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels, 10, 896–904. DOI: 10.1021/ef950227t.

    Article  CAS  Google Scholar 

  • Watile, R. A., Bhanage, B. M., Fujita, S. I., & Arai, M. (2014). Indirect utilization of carbon dioxide in organic synthesis for valuable chemicals. In B. M. Bhanage, & M. Arai (Eds.), Transformation and utilization of carbon dioxide (pp. 55–71). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-44988-8_3.

    Chapter  Google Scholar 

  • Weatherbee, G. D., & Bartholomew, C. H. (1982). Hydrogena-tion of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 77, 460–472. DOI: 10.1016/0021-9517(82)90186-5.

    Article  CAS  Google Scholar 

  • Wentrcek, P. R., Wood, B. J., & Wise, H. (1976). The role of surface carbon in catalytic methanation. Journal of Catalysis, 43, 363–366. DOI: 10.1016/0021-9517(76)90324-9.

    Article  CAS  Google Scholar 

  • Westermann, A., Azambre, B., Bacariza, M. C., Graca, I., Ribeiro, M. F., Lopes, J. M., & Henriques, C. (2015). Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study. Applied Catalysis B, 174-175, 120–125. DOI: 10.1016/j.apcatb.2015.02.026.

    Article  CAS  Google Scholar 

  • World News (2013). Clariant supplies SNG catalyst for first commercial CO methanation plant “Power-to-Gas”. Retrieved July 8, 2015, from http://article.wn.com/view/2013/10/21/Clariant_Supplies_SNG_Catalyst_for_First_ Commercial_CO2_Meth/#/related_news

    Google Scholar 

  • Yaccato, K., Carhart, R., Hagemeyer, A., Lesik, A., Strasser, P., Volpe, A. F., Turner, H., Weinberg, H., Grasselli, R. K., & Brooks, C. (2005). Competitive CO and CO2 methanation over supported noble metal catalysts in high through-put scanning mass spectrometer. Applied Catalysis A, 296, 30–48. DOI: 10.1016/j.apcata.2005.07.052.

    Article  CAS  Google Scholar 

  • Yang, H. Q., Xu, Z. H., Fan, M. H., Gupta, R., Slimane, R. B., Bland, A. E., & Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20, 14–27. DOI: 10.1016/s1001-0742(08)60002-9.

    Article  CAS  Google Scholar 

  • Yu, K. M. K., Curcic, I., Gabriel, J., & Tsang, S. C. E. (2008). Recent advances in CO2 capture and utilization. ChemSusChem, 1, 893–899. DOI: 10.1002/cssc.200800169.

    Article  CAS  Google Scholar 

  • Zamani, A. H., Ali, R., & Bakar, W. A. W. A. (2014). The investigation of Ru/Mn/Cu-Al2O3 oxide catalysts for CO2/H2 methanation in natural gas. Journal of the Tai-wan Institute of Chemical Engineers, 45, 143–152. DOI: 10.1016/j.jtice.2013.04.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlisa Baraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraj, E., Vagaský, S., Hlinčík, T. et al. Reaction mechanisms of carbon dioxide methanation. Chem. Pap. 70, 395–403 (2016). https://doi.org/10.1515/chempap-2015-0216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0216

Key words

Navigation