Skip to main content
Log in

Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this paper, Fe3O4 nanoparticles coated with mesoporous silica were prepared successfully, noted as Fe3O4 at the mobile composition of matter No. 41 (MCM-41). Also, Fe3O4 at MCM-41 was grafted by both 3-aminopropyltriethoxysilane (APTS) and 3-chloropropyltriethoxysilane (CPS), noted as Fe3O4 at MCM-41/APTS and Fe3O4 at MCM-41/CPS. The compounds were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetry and N2 adsorption/desorption. Then, the enzyme, porcine pancreas lipase (PPL), was immobilized onto these modified nanoparticles by covalent attachment, physical adsorption and cross-linking, noted as Fe3O4 at MCM-41/CPS-PPL, Fe3O4 at MCM-41-PPL and Fe3O4 at MCM-41/APTS-PPL, respectively. The results showed that Fe3O4 at MCM-41/CPS was the best nanomaterial for PPL immobilization, exhibiting enhanced immobilization efficiency (maximum 96%), maximum relative activity (up to 96%), high stability and reusability (83% 56 days and 86.7% ten cycles). Additionally, it offered some other advantages, such as easy recycling and reuse, complying with the trend of green chemistry. Therefore, Fe3O4 at MCM-41/CPS in combination with a relevant method can be proposed for commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • Calvaresi, M., & Zerbetto, F. (2013). The devil and holy water: protein and carbon nanotube hybrids. Accounts of Chemical Research, 46, 2454–2463. DOI: 10.1021/ar300347d.

    Article  CAS  Google Scholar 

  • Chiou, S. H., & Wu, W. T. (2004). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25, 197–204. DOI: 10.1016/s0142-9612(03)00482-4.

    Article  CAS  Google Scholar 

  • Deng, Y. H., Cai, Y., Sun, Z. K., Gu, D., Wei, J., Li, W., Guo, X. H., Yang, J. P., & Zhao, D. Y. (2010). Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. Journal of the American Chemical Society, 132, 8466–8473. DOI: 10.1021/ja1025744.

    Article  CAS  Google Scholar 

  • Diaz, J. F., & Balkus, K. J., Jr. (1996). Enzyme immobilization in MCM-41 molecular sieve. Journal of Molecular Catalysis B: Enzymatic, 2, 115–126. DOI: 10.1016/s1381-1177(96)00017-3.

    Article  CAS  Google Scholar 

  • Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe3O4 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685. DOI: 10.1021/ja021223n.

    Article  CAS  Google Scholar 

  • Felhofer, J. L., Caranto, J. D., & Garcia, C. D. (2010). Adsorption kinetics of catalase to thin films of carbon nanotubes. Langmuir, 26, 17178–17183. DOI: 10.1021/la103035n.

    Article  CAS  Google Scholar 

  • Fernández-Fernández, M., Sanromán, M., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31, 1808–1825. DOI: 10.1016/j.biotechadv.2012.02.013.

    Article  Google Scholar 

  • Gao, X., Yu, K. M. K., Tam, K. Y., & Tsang, S. C. (2003). Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chemical Communications, 2003, 2998–2999. DOI: 10.1039/b310435d.

    Article  Google Scholar 

  • Gawande, M. B., Rathi, A. K., Nogueira, I. D., Varma, R. S., & Branco, P. S. (2013a). Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multi-component reactions. Green Chemistry, 15, 1895–1899. DOI: 10.1039/c3gc40457a.

    Article  CAS  Google Scholar 

  • Gawande, M. B., Branco, P. S., & Varma, R. S. (2013b). Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chemical Society Reviews, 2013, 3371–3393. DOI: 10.1039/c3cs35480f.

    Article  Google Scholar 

  • Gómez, J. L., Bastida, J., Máximo, M. F., Montiel, M. C., Murcia, M. D., & Ortega, S. (2011). Solvent-free polyglycerol polyricinoleate synthesis mediated by lipase from Rhizopus arrhizus. Biochemical Engineering Journal, 54, 111–116. DOI: 10.1016/j.bej.2011.02.007.

    Article  Google Scholar 

  • Gu, F. N., Lin, W. G., Yang, J. Y., Wei, F., Wang, Y., & Zhu, J. H. (2012). Fabrication of centimeter-sized sphere of mesoporous silica with well-defined hollow nanosphere topology and its high performance in adsorbing phenylalanine. Microporous and Mesoporous Materials, 151, 142–148. DOI: 10.1016/j.micromeso.2011.11.001.

    Article  CAS  Google Scholar 

  • Hirsh, S. L., Bilek, M. M. M., Nosworthy, N. J., Kondyurin, A., dos Remedios, C. G., & McKenzie, D. R. (2010). A comparison of covalent immobilization and physical adsorption of a cellulase enzyme mixture. Langmuir, 26, 14380–14388. DOI: 10.1021/la1019845.

    Article  CAS  Google Scholar 

  • Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A., & Faramarzi, M. A. (2014). Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochemical Engineering Journal, 88, 131–141. DOI: 10.1016/j.bej.2014.04.009.

    Article  CAS  Google Scholar 

  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110. DOI: 10.1021/cr068445e.

    Article  CAS  Google Scholar 

  • Lee, D. G., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. S., & Lee, C. H. (2009). Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic, 57, 62–66. DOI: 10.1016/j.molcatb.2008.06.017.

    Article  CAS  Google Scholar 

  • Li, Z., Xie, K., & Slade, R. C. T. (2001). High selective catalyst CuCl/MCM-41 for oxidative carbonylation of methanol to dimethyl carbonate. Applied Catalysis A: General, 205, 85–92. DOI: 10.1016/s0926-860x(00)00546-9.

    Article  CAS  Google Scholar 

  • Li, C. Z., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2007). Characterization and immobilization of liposome-bound cel-lulase for hydrolysis of insoluble cellulose. Bioresource Technology, 98, 1366–1372. DOI: 10.1016/j.biortech.2006.05.028.

    Article  CAS  Google Scholar 

  • Li, L., Yang, Y., Ding, J., & Xue, J. M. (2010). Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chemistry of Materials, 22, 3183–3191. DOI: 10.1021/cm100289d.

    Article  CAS  Google Scholar 

  • Li, B. S., Liu, Z. X., Han, C. Y., Ma, W., & Zhao, S. J. (2012). In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay. Journal of Colloid and Interface Science, 377, 334–341. DOI: 10.1016/j.jcis.2012.03.067.

    Article  CAS  Google Scholar 

  • Li, S., Zhai, S. R., Zhang, J. M., Xiao, Z. Y., An, Q. D., Li, M. H., & Song, X. W. (2013). Magnetic and stable H3PW12O40-based core@shell nanomaterial towards the esterification of oleic acid with methanol. European Journal of Inorganic Chemistry, 2013, 5428–5435. DOI: 10.1002/ejic.201300813.

    Article  CAS  Google Scholar 

  • Li, S., Zhai, S. R., An, Q. D., Li, M. H., Song, Y., & Song, X. W. (2014). Designed synthesis of multifunctional Fe3O4@SiO2—NH2@CS—Co(II) towards efficient oxidation of ethylbenzene. Materials Research Bulletin, 60, 665–673. DOI: 10.1016/j.materresbull.2014.09.042.

    Article  CAS  Google Scholar 

  • Lin, J. F., Zhao, B. H., Cao, Y., Xu, H., Ma, S. H., Guo, M. Y., Qiao, D. R., & Cao, Y. (2014). Rationally designed Fe-MCM-41 by protein size to enhance lipase immobilization, catalytic efficiency and performance. Applied Catalysis A: General, 478, 175–185. DOI: 10.1016/j.apcata.2014.03.034.

    Article  CAS  Google Scholar 

  • Ling, Y. H., Long, M. C., Hu, P. D., Chen, Y., & Huang, J. W. (2014). Magnetically separable core-shell structural γ-Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis. Journal of Hazardous Materials, 264, 195–202. DOI: 10.1016/j.jhazmat.2013.11.008.

    Article  CAS  Google Scholar 

  • Liu, S., Chen, H. M., Lu, X. H., Deng, C. H., Zhang, X. M., & Yang, P. Y. (2010). Facile synthesis of copper(II) immobilized on magnetic mesoporous silica microspheres for selective enrichment of peptides for mass spectrometry analysis. Angewandte Chemie, 122, 7719–7723. DOI: 10.1002/ange.201003602.

    Article  Google Scholar 

  • Liu, C. H., Huang, C. C., Wang, Y. W., Lee, J. D., & Chang, J. S. (2012a). Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Applied Energy, 100, 41–46. DOI: 10.1016/j.apenergy.2012.05.053.

    Article  CAS  Google Scholar 

  • Liu, J., Bai, S. Y., Jin, Q. R., Zhong, H., Li, C., & Yang, Q. H. (2012b). Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment. Langmuir, 28, 9788–9796. DOI: 10.1021/la301330s.

    Article  CAS  Google Scholar 

  • Long, J., Jiao, A. Q., Wei, B. X., Wu, Z. Z., Zhang, Y. J., Xu, X. M., & Jin, Z. Y. (2014). A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 109, 53–61. DOI: 10.1016/j.molcatb.2014.08.007.

    Article  CAS  Google Scholar 

  • Lu, S., He, J., & Guo, X. (2010). Architecture and performance of mesoporous silica-lipase hybrids via non-covalent interfacial adsorption. AIChE Journal, 56, 506–514. DOI: 10.1002/aic.11963.

    CAS  Google Scholar 

  • Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., Pessela, G. B. C. C., Hidalgo, A., Fernández-Lorente, G., Fernández-Lafuente, R., Guisán, J. M. (2006). Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 39, 274–280. DOI: 10.1016/j.enzmictec.2005.10.014.

    Article  CAS  Google Scholar 

  • Mazur, M., Barras, A., Kuncser, V., Galatanu, A., Zaitzev, V., Turcheniuk, K. V., Woisel, P., Lyskawa, J., Laure, W., Siriwardena, A., Boukherrouba, R., & Szunerits, S. (2013). Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors. Nanoscale, 2013, 2692–2702. DOI: 10.1039/c3nr33506b.

    Article  Google Scholar 

  • Mello, M. R., Phanon, D., Silveira, G. Q., Llewellyn, P. L., & Ronconi, C. M. (2011). Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous and Mesoporous Materials, 143, 174–179. DOI: 10.1016/j.micromeso.2011.02.022.

    Article  CAS  Google Scholar 

  • Moradzadegan, A., Ranaei-Siadat, S. O., Ebrahim-Habibi, A., Barshan-Tashnizi, M., Jalili, R., Torabi, S. F., & Khajeh, K. (2010). Immobilization of acetylcholinesterase in nanofi-brous PVA/BSA membranes by electrospinning. Engineering in Life Sciences, 10, 57–64. DOI: 10.1002/elsc.200900001.

    Article  CAS  Google Scholar 

  • Mosafa, L., Moghadam, M., & Shahedi, M. (2013). Papain enzyme supported on magnetic nanoparticles: Preparation, characterization and application in the fruit juice clarification. Chinese Journal of Catalysis, 34, 1897–1904. DOI: 10.1016/s1872-2067(12)60663-9.

    Article  CAS  Google Scholar 

  • Park, H. J., McConnell, J. T., Boddohi, S., Kipper, M. J., & Johnson, P. A. (2011). Synthesis and characterization of enzyme-magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids and Surfaces B: Biointerface, 83, 198–203. DOI: 10.1016/j.colsurfb.2010.11.006.

    Article  CAS  Google Scholar 

  • Patra, A. K., Dutta, A., & Bhaumik, A. (2012). Highly ordered mesoporous TiO2—Fe2O3 mixed oxide synthesized by sol-gel pathway: An efficient and reusable heterogeneous catalyst for dehalogenation reaction. ACS Applied Materials & Interfaces, 4, 5022–5028. DOI: 10.1021/am301394u.

    Article  CAS  Google Scholar 

  • Raghunathan, A., Melikhov, Y., Snyder, J. E., & Jiles, D. C. (2012). Modeling of two-phase magnetic materials based on Jiles-therton theory of hysteresis. Journal of Magnetism and Magnetic Materials, 324, 20–22. DOI: 10.1016/j.jmmm.2011.07.017.

    Article  CAS  Google Scholar 

  • Reddy, L. H., Arias, J. L., Nicolas, J., & Couvreur, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews, 112, 5818–5878. DOI: 10.1021/cr300068p.

    Article  CAS  Google Scholar 

  • Rossi, L. M., Quach, A. D., & Rosenzweig, Z. (2004). Glucose oxidase magnetite nanoparticle bioconjugate for glucose sensing. Analytical and Bioanalytical Chemistry, 380, 606–613. DOI: 10.1007/s00216-004-2770-3.

    Article  CAS  Google Scholar 

  • Shang, F. P., Sun, J. R., Wu, S. J., Yang, Y., Kan, Q. B., & Guan, J. Q. (2010). Direct synthesis of acid-base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in deacetalization-Knoevenagel reactions. Microporous and Mesoporous Materials, 134, 44–50. DOI: 10.1016/j.micromeso.2010.05.005.

    Article  CAS  Google Scholar 

  • Sharma, R. K., Monga, Y., & Puri, A. (2014). Magnetically separable silica@Fe3O4 core-shell supported nano-structured copper(II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous medium at room temperature. Journal of Molecular Catalysis A: Chemical, 393, 84–95. DOI: 10.1016/j.molcata.2014.06.009.

    Article  CAS  Google Scholar 

  • Shi, B. F., Wang, Y. Q., Ren, J. W., Liu, X. H., Zhang, Y., Guo, Y. L., Guo, Y., & Lu, G. Z. (2010). Superparamagnetic aminopropyl-functionalized silica core-shell microspheres as magnetically separable carriers for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 63, 50–56. DOI: 10.1016/j.molcatb.2009.12.003.

    Article  CAS  Google Scholar 

  • Singamaneni, S., Bliznyuk, V. N., Binek, C., & Tsymbal, E. Y. (2011). Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. Journal of Materials Chemistry, 2011, 16819–16845. DOI: 10.1039/c1jm11845e.

    Article  Google Scholar 

  • Sohrabi, N., Rasouli, N., & Torkzadeh, M. (2014). Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles. Chemical Engineering Journal, 240, 426–433. DOI: 10.1016/j.cej.2013.11.059.

    Article  CAS  Google Scholar 

  • Šulek, F., Drofenik, M., Habulin, M., & Knez, Ž. (2010). Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase. Journal of Magnetism and Magnetic Materials, 322, 179–185. DOI: 10.1016/j.jmmm.2009.07.075.

    Article  Google Scholar 

  • Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60, 1252–1265. DOI: 10.1016/j.addr.2008.03.018.

    Article  CAS  Google Scholar 

  • Tang, W. W., Zeng, G. M., Gong, J. L., Liang, J., Xu, P., Zhang, C., & Huang, B. B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468, 1014–1027. DOI: 10.1016/j.scitotenv.2013.09.044.

    Article  Google Scholar 

  • Tran, D. T., Chen, C. L., & Chang, J. S. (2012). Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology, 158, 112–119. DOI: 10.1016/j.jbiotec.2012.01.018.

    Article  CAS  Google Scholar 

  • Wang, P. (2006). Nanoscale biocatalyst systems. Current Opinion in Biotechnology, 17, 574–579. DOI: 10.1016/j.copbio.2006.10.009.

    Article  CAS  Google Scholar 

  • Wang, X. Z., Zhao, Z. B., Qu, J. Y., Wang, Z. Y., & Qiu, J. S. (2010). Shape-control and characterization of magnetite prepared via a one-step solvothermal route. Crystal Growth & Design, 10, 2863–2869. DOI: 10.1021/cg900472d.

    Article  CAS  Google Scholar 

  • Wang, F., Li, Z. H., Liŭ, D., Wang, G. Q., & Liú, D. (2014). Synthesis of magnetic mesoporous silica composites via a modified Stöber approach. Journal of Porous Materials, 21, 513–519. DOI: 10.1007/s10934-014-9798-3.

    Article  CAS  Google Scholar 

  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., & Liu, Z. F. (2012a). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1–10. DOI: 10.1016/j.scitotenv.2012.02.023.

    Article  CAS  Google Scholar 

  • Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012b). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423–431. DOI: 10.1016/j.cej.2012.07.048.

    Article  CAS  Google Scholar 

  • Xu, J. K., Ju, C. X., Sheng, J., Wang, F., Zhang, Q., Sun, G. L., & Sun, M. (2013). Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization. Bulletin of the Korean Chemical Society, 34, 2408–2412. DOI: 10.5012/bkcs.2013.34.8.2408.

    Article  CAS  Google Scholar 

  • Xu, J. K., Sun, J. J., Wang, Y. J., Sheng, J., Wang, F., & Sun, M. (2014). Application of iron magnetic nanoparticles in protein immobilization. Molecules, 19, 11465–11486. DOI: 10.3390/molecules190811465.

    Article  Google Scholar 

  • Yang, J., Hu, Y., Jiang, L., Zou, B., Jia, R., & Huang, H. (2013). Enhancing the catalytic properties of porcine pancreatic lipase by immobilization on SBA-15 modified by functionalized ionic liquid. Biochemical Engineering Journal, 70, 46–54. DOI: 10.1016/j.bej.2012.09.016.

    Article  CAS  Google Scholar 

  • Yang, L., Guo, Y. L., Zhan, W. C., Guo, Y., Wang, Y. S., & Lu, G. Z. (2014). One-pot synthesis of aldehyde-functionalized mesoporous silica-Fe3O4 nanocomposites for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 197, 1–7. DOI: 10.1016/j.micromeso.2014.05.044.

    Article  CAS  Google Scholar 

  • Ye, P., Xu, Z. K., Wu, J., Innocent, C., & Seta, P. (2006). Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials, 27, 4169–4176. DOI: 10.1016/j.biomaterials.2006.03.027.

    Article  CAS  Google Scholar 

  • Ye, P., Jiang, J., & Xu, Z. K. (2007). Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloids and Surfaces B: Biointerfaces, 60, 62–67. DOI: 10.1016/j.colsurfb.2007.05.022.

    Article  CAS  Google Scholar 

  • Yoon, T. J., Lee, W., Oh, Y. S., & Lee, J. K. (2003). Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New Journal of Chemistry, 2003, 227–229. DOI: 10.1039/b209391j.

    Article  Google Scholar 

  • Zhang, D. H., Zhou, C., Sun, Z. H., Wu, L. Z., Tung, C. H., & Zhang, T. R. (2012). Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. Nanoscale, 2012, 6244–6255. DOI: 10.1039/c2nr31929b.

    Article  Google Scholar 

  • Zhou, Z., Piepenbreier, F., Reddy Marthala, V. R., Karbacher, K., & Hartmann, M. (2015). Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catalysis Today, 243, 173–183. DOI: 10.1016/j.cattod.2014.07.047.

    Article  CAS  Google Scholar 

  • Zlateski, V., Fuhrer, R., Koehler, F. M., Wharry, S., Zeltner, M., Stark, W. J., Moody, T. S., & Grass, R. N. (2014). Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets. Bioconjugate Chemistry, 25, 677–684. DOI: 10.1021/bc400476y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, YB., Jing, T., Tian, JZ. et al. Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase. Chem. Pap. 69, 1298–1311 (2015). https://doi.org/10.1515/chempap-2015-0142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0142

Keywords

Navigation