Skip to main content
Log in

Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The molecular structures of a series of selenocysteine-containing dipeptides in their zwitterionic forms were studied using the B3LYP/6-311++G(d,p) level in the aqueous phase. The B3LYP and BH and HLYP functionals in combination with 6-311++G(d,p) and LANL2DZ basis sets were used to investigate the effects of metal coordination on the structural and molecular properties of the dipeptides by complexing them with bivalent copper ions. The results from this DFT study provide valuable insights into the interaction enthalpies (metal ion-binding affinities) and free energies, the influence of the C-terminal moiety on the backbone structural features, the existence of various types of intramolecular H-bond interactions, harmonic vibrational frequencies, along with various other electronic properties pertaining to the zwitterions of the dipeptide molecules as well as their metallic complexes. Metal coordination via the carboxylate groups tends to enhance the planarity of the amide planes. The participations of the N- and C-terminal side-chain moieties in metal-binding markedly enhance the thermodynamic stability of the metalated dipeptides. The theoretical λmaxvalues, calculated using the TD/DFT level for all the systems, well represent the occurrence of d-d transitions in the Cu-dipeptide complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, M. P., & Uvdal, P. (2005). New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). The Journal of Physical Chemistry A, 109, 2937–2941. DOI: 10.1021/jp045733a.

    Article  CAS  Google Scholar 

  • Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., & Nesbitt, D. J. (2011). Definition of the hydrogen bond (IU-PAC Recommendations 2011). Pure and Applied Chemistry, 83, 1637–1641. DOI: 10.1351/pAC-REC-10-01-02.

    CAS  Google Scholar 

  • Bauernschmitt, R., & Ahlrichs, R. (1996). Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256, 454–464. DOI: 10.1016/0009-2614(96)00440-x.

    Article  CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.

    Article  CAS  Google Scholar 

  • Böck, A., Forchhammer, K., Heider, J., Leinfelder, W., Sawers, G., Veprek, B., & Zinoni, F. (1991a). Selenocysteine: the 21st amino acid. Molecular Microbiology, 5, 515–520. DOI: 10.1111/j.1365-2958.1991.tb00722.x.

    Article  Google Scholar 

  • Böock, A., Forchhammer, K., Heider, J., & Baron, C. (1991b). Selenoprotein synthesis: an expansion of the genetic code. Trends in Biochemical Sciences, 16, 463–467. DOI: 10.1016/0968-0004(91)90180-4.

    Article  Google Scholar 

  • Cheam, T. C., & Krimm, S. (1989). Ab initio force fields of alanine dipeptide in C5 and C7 conformations. Journal of Molecular Structure (Theochem), 188, 15–43. DOI: 10.1016/0166-1280(89)85023-7.

    Article  Google Scholar 

  • Constantino, E., Rimola, A., Rodríguez-Santiago, L., & Sodupe, M. (2005). Coordination properties of glycylglycine to Cu+, Ni+ and Co+. Influence of metal cation electronic configuration. New Journal of Chemistry, 29, 1585–1593. DOI: 10.1039/b512618e.

    Article  CAS  Google Scholar 

  • Das, G. (2014). Rotational aspects of non-ionized creatine in the gas phase. Monatshefte für Chemie — Chemical Monthly, 145, 1431–1441. DOI: 10.1007/s00706-014-1210-0.

    Article  CAS  Google Scholar 

  • Das, G., & Mandal, S. (2014). Ab initio- and density-functional studies of conformational behavior of N-formylmethionine in gaseous phase. Chemical Papers, 68, 1608–1620. DOI: 10.2478/s11696-014-0614-y.

    CAS  Google Scholar 

  • DeGrado, W. F., Summa, C. M., Pavone, V., Nastri, F., & Lombardi, A. (1999). De novo design and structural characterization of proteins and metalloproteins. Annual Review of Biochemistry, 68, 779–819. DOI: 10.1146/annurev.biochem.68.1.779.

    Article  CAS  Google Scholar 

  • Dudev, T., & Lim, C. (2009). Metal-binding affinity and selectivity of nonstandard natural amino acid residues from DFT/CDM calculations. The Journal of Physical Chemistry B, 113, 11754–11764. DOI: 10.1021/jp904249s.

    Article  CAS  Google Scholar 

  • Fraústo da Silva, J. J. R., & Williams, R. J. P. (1991). The biological chemistry of the elements: The inorganic chemistry of life. Oxford, UK: Clarednon Press.

    Google Scholar 

  • Foresman, J. B., & Frisch, A. (1996). Exploring chemistry with electronic structure methods (2nd ed.). Pittsburgh, PA, USA: Gaussian.

    Google Scholar 

  • Freeman, F., & Le, K. T. (2003). A computational study of conformations and conformers of 1,3-dithiane (1,3-dithiacyclohexane). The Journal of Physical Chemistry A, 107, 2908–2918. DOI: 10.1021/jp0138633.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09, Revision B.01 [computer software]. Wallingford, CT, USA: Gaussian.

    Google Scholar 

  • Fukui, K., Yonezawa, T., & Shingu, H. (1952). A molecular orbital theory of reactivity in aromatic hydrocarbons. The Journal of Chemical Physics, 20, 722–725. DOI: 10.1063/1.1700523.

    Article  CAS  Google Scholar 

  • Gould, I. R., & Hillier, I. H. (1993). Solvation of alanine dipeptide: a quantum mechanical treatment. Journal of the Chemical Society, Chemical Communications, 1993, 951–952. DOI: 10.1039/c39930000951.

    Article  Google Scholar 

  • Gould, I. R., Cornell, W. D., & Hillier, I. H. (1994). A quantum mechanical investigation of the conformational energetics of the alanine and glycine dipeptides in the gas phase and in aqueous solution. Journal of the American Chemical Society, 116, 9250–9256. DOI: 10.1021/ja00099a048.

    Article  CAS  Google Scholar 

  • Hatfield, D. L., & Gladyshev, V. N. (2002). How selenium has altered our understanding of the genetic code. Molecular and Cellular Biology, 22, 3565–3576. DOI: 10.1128/mcb.22.11.3565-3576.2002.

    Article  CAS  Google Scholar 

  • Hay, P. J. (1977). Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. The Journal of Chemical Physics, 66, 4377–4384. DOI: 10.1063/1.433731.

    Article  CAS  Google Scholar 

  • Hay, P. J., & Wadt, W. R. (1985a). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82, 270–283. DOI: 10.1063/1.448799.

    Article  CAS  Google Scholar 

  • Hay, P. J., & Wadt, W. R. (1985b). Ab initio effective core potentials for molecular calculations. Potentials for main group elements K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310. DOI: 10.1063/1.448975.

    Article  CAS  Google Scholar 

  • Hehre, W. J., Radom, L., Schleyer, P. v. R., & Pople, J. A. (1986). Ab initio molecular orbital theory. New York, NY, USA: Wiley.

    Google Scholar 

  • Jeanvoine, Y., & Spezia, R. (2009). Mn2+-, Fe2+-, Co2+-, Ni2+-, Cu2+-, and Zn2+-binding chalcogen-chalcogen bridges: A compared MP2 and B3LYP study. The Journal of Physical Chemistry A, 113, 7878–7887. DOI: 10.1021/jp811460f.

    Article  CAS  Google Scholar 

  • Kaur, D., Sharma, P., Bharatam, P. V., & Kaur, M. (2008). Understanding selenocysteine through conformational analysis, proton affinities, acidities and bond dissociation energies. International Journal of Quantum Chemistry, 108, 983–991. DOI: 10.1002/qua.21556.

    Article  CAS  Google Scholar 

  • Keefe, C. D., & Pearson, J. K. (2004). Ab initio investigations of dipeptide structures. Journal of Molecular Structure (Theochem), 679, 65–72. DOI: 10.1016/j.theochem.2004.04.005.

    Article  CAS  Google Scholar 

  • Kroneck, P. M. H., Vortisch, V., & Hemmerich, P. (1980). Model studies on the coordination of copper in biological systems. The deprotonated peptide nitrogen as a potential binding site for copper(II). European Journal of Biochemistry, 109, 603–612. DOI: 10.1111/j.1432-1033.1980.tb04833.x.

    Article  CAS  Google Scholar 

  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  • Lippard, S. J., & Berg, J. M. (1994). Principles of bioinorganic chemistry. Mill Valley, CA, USA: University Science Books.

    Google Scholar 

  • Lu, Y., Berry, S. M., & Pfister, T. D. (2001). Engineering novel metalloproteins: Design of metal-binding sites into native protein scaffolds. Chemical Reviews, 101, 3047–3080. DOI: 10.1021/cr0000574.

    Article  CAS  Google Scholar 

  • Lukashenko, N. P. (2010). Expanding genetic code: Amino acids 21 and 22, selenocysteine and pyrrolysine. Russian Journal of Genetics, 46, 899–916. DOI: 10.1134/s1022795410080016.

    Article  CAS  Google Scholar 

  • Mandal, S., & Das, G. (2013). Structure of dipeptides having N-terminal selenocysteine residues: a DFT study in gas and aqueous phase. Journal of Molecular Modeling, 19, 2613–2623. DOI: 10.1007/s00894-013-1808-x.

    Article  CAS  Google Scholar 

  • Mandal, S., Das, G., & Askari, H. (2014). Experimental and quantum chemical modeling studies of the interactions of L-phenylalanine with divalent transition metal cations. Journal of Chemical Information and Modeling, 54, 2524–2535. DOI: 10.1021/ci500500k.

    Article  CAS  Google Scholar 

  • Marques, M. A. L., & Gross, E. K. U. (2004). Time-dependent density functional theory. Annual Review of Physical Chemistry, 55, 427–455. DOI: 10.1146/annurev.physchem.55.091602.094449.

    Article  CAS  Google Scholar 

  • Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129. DOI: 10.1016/0301-0104(81)85090-2.

    Article  Google Scholar 

  • Ramachandhan, G. N. (1963). Need for nonplanar peptide units in polypeptide chains. Biopolymers, 6, 1494–1496. DOI: 10.1002/bip.1968.360061013.

    Article  Google Scholar 

  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. DOI: 10.1016/s0022-2836(63)80023-6.

    Article  CAS  Google Scholar 

  • Remko, M., & Rode, B. M. (2000). Bivalent cation binding effect on formation of the peptide bond. Chemical Physics Letters, 316, 489–494. DOI: 10.1016/s0009-2614(99)01322-6.

    Article  CAS  Google Scholar 

  • Remko, M., Fitz, D., & Rode, B. M. (2008). Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure and properties of L-arginine and zwitterionic L-arginine. The Journal of Physical Chemistry A, 112, 7652–7661. DOI: 10.1021/jp801418h.

    Article  CAS  Google Scholar 

  • Remko, M., Fitz, D., Broer, R., & Rode, B. M. (2011). Effect of metal ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms. Journal of Molecular Modeling, 17, 3117–3128. DOI: 10.1007/s00894-011-1000-0.

    Article  CAS  Google Scholar 

  • Rode, B. M. (1999). Peptides and the origin of life. Peptides, 20, 773–786. DOI: 10.1016/s0196-9781(99)00062-5.

    Article  CAS  Google Scholar 

  • Rother, M., & Krzycki, J. A. (2010). Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea, 2010, 453642. DOI: 10.1155/2010/453642.

    Article  Google Scholar 

  • Saada, I., & Pearson, J. K. (2011). A theoretical study of the structure and electron density of the peptide bond. Computational and Theoretical Chemistry, 969, 76–82. DOI: 10.1016/j.comptc.2011.05.023.

    Article  CAS  Google Scholar 

  • Spezia, R., Tournois, G., Cartailler, T., Tortajada, J., & Jeanvoine, Y. (2006). Co2+ binding cysteine and selenocysteine: A DFT study. The Journal of Physical Chemistry A, 110, 9727–9735. DOI: 10.1021/jp0614998.

    Article  CAS  Google Scholar 

  • Stadtman, T. C. (1996). Selenocysteine. Annual Review of Biochemistry, 65, 83–100. DOI: 10.1146/annurev.bi.65.070196.000503.

    Article  CAS  Google Scholar 

  • Stepanian, S. G., Reva, I. D., Radchenko, E. D., Rosado, M. T. S., Duarte, M. L. T. S., Fausto, R., & Adamowicz, L. (1998). Matrix-isolation infrared and theoretical studies of the glycine conformers. The Journal of Physical Chemistry A, 102, 1041–1054. DOI: 10.1021/jp973397a.

    Article  CAS  Google Scholar 

  • Stratmann, R. E., Scuseria, G. E., & Frisch, M. J. (1998). An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics, 109, 8218–8224. DOI: 10.1063/1.477483.

    Article  CAS  Google Scholar 

  • Tobias, D. J., & Brooks, C. L., III (1992). Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution: A comparison of theoretical results. The Journal of Physical Chemistry, 96, 3864–3870. DOI: 10.1021/j100188a054.

    Article  CAS  Google Scholar 

  • Wachters, A. J. H. (1970). Gaussian basis set for molecular wavefunctions containing third-row atoms. The Journal of Chemical Physics, 52, 1033–1036. DOI: 10.1063/1.1673095.

    Article  CAS  Google Scholar 

  • Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82, 284–298. DOI: 10.1063/1.448800.

    Article  CAS  Google Scholar 

  • Wang, Z. X., & Duan, Y. (2004). Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Φ, Ψ) energy maps and conformers in the gas phase, ether, and water. Journal of Computational Chemistry, 25, 1699–1716. DOI: 10.1002/jcc.20092.

    Article  CAS  Google Scholar 

  • Yokota, K., Hagimori, M., Mizuyama, N., Nishimura, Y., Fujito, H., Shigemitsu, Y., & Tominaga, Y. (2012). Synthesis, solid-state fluorescence properties, and computational analysis of novel 2-aminobenzo[4,5]thieno[3,2-d]pyrimidine 5,5-dioxides. Beilstein Journal of Organic Chemistry, 8, 266–274. DOI: 10.3762/bjoc.8.28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunajyoti Das.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, G., Mandal, S. Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions. Chem. Pap. 69, 616–626 (2015). https://doi.org/10.1515/chempap-2015-0064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0064

Keywords

Navigation