Skip to main content
Log in

Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Biocatalysed precipitation of an insoluble product accumulated on the enzyme-modified electrode surface was applied as the amplification path for low concentration sensing of hydrogen peroxide and glucose. Sensitive electrochemical and quartz-crystal microbalance (QCM) biosensors based on biocatalytic precipitation were developed. A horseradish peroxidase (HRP) monolayer-modified electrode was used to sense H2O2 via the oxidation of 4-chloro-1-naphthol (4CN) forming insoluble benzo-4-chlorocyclohexadienone. Additionally, the bienzyme system employed glucose oxidase (GOx) linked to HRP/4CN. The amount of the precipitate assembled on the sensing surface corresponded to the concentration of analytes and to the length of the incubation interval. The precipitated deposits were followed as a change of impedance using cyclic voltammetry (CV), mass change was determined continuously using a microgravimetric quartz-crystal microbalance, and optical microscopy enabled the visualisation of the precipitate. Regeneration of the enzyme-modified electrode was performed using cathodic reduction of the insoluble product. Thus, a simple biosensor for multiple analyses with low detection limits and of low cost can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, J. M., Pariente, F., Hernández, L., & Lorenzo, E. (1998). A quartz crystal microbalance assay for detection of antibodies against the recombinant African swine fever virus attachment protein p12 in swine serum. Analytica Chimica Acta, 368, 183–189. DOI: 10.1016/s0003-2670(98)00205-0.

    Article  CAS  Google Scholar 

  • Akter, R., Rahman, M. A., & Rhee, C. K. (2012). Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Analytical Chemistry, 84, 6407–6415. DOI: 10.1021/ac300110n.

    Article  CAS  Google Scholar 

  • Alfonta, L., Katz, E., & Willner, I. (2000). Sensing of acetyl-choline by a tricomponent-enzyme layered electrode using Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Analytical Chemistry, 72, 927–935. DOI: 10.1021/ac990439d.

    Article  CAS  Google Scholar 

  • Alfonta, L., Bardea, A., Khersonsky, O., Katz, E., & Willner, I. (2001). Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosensors & Bioelectronics, 16, 675–687. DOI: 10.1016/s0956-5663(01)00231-7.

    Article  CAS  Google Scholar 

  • Azevedo, A. M., Prazeres, D. M. F., Cabral, J. M. S., & Fonseca, L. P. (2005). Ethanol biosensors based on alcohol oxidase. Biosensors & Bioelectronics, 21, 235–247. DOI: 10.1016/j.bios.2004.09.030.

    Article  CAS  Google Scholar 

  • Biscay, J., Costa Rama, E., González García, M. B., Pingarrón Carrazón, J. M., & Costa Garcia, A. (2011). Enzymatic sensor using mediator-screen-printed carbon electrodes. Electroanalysis, 23, 209–214. DOI: 10.1002/elan.201000471.

    Article  CAS  Google Scholar 

  • Chen, W., Cai, S., Ren, Q. Q., Wen, W., & Zhao, Y. D. (2012). Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 137, 49–58. DOI: 10.1039/c1an15738h.

    Article  CAS  Google Scholar 

  • Chen, X. M., Cai, Z. X., Huang, Z. Y., Oyama, M., Jiang, Y. Q., & Chen, X. (2013). Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 97, 398–403. DOI: 10.1016/j.electacta.2013.02.047.

    Article  CAS  Google Scholar 

  • Ding, Y. J., Wang, H., Shen, G. L., & Yu, R. Q. (2005). Enzyme-catalyzed amplified immunoassay for the detection of Toxoplasma gondii-specific IgG using Faradaic impedance spectroscopy, CV and QCM. Analytical & Bioanalytical Chemistry, 382, 1491–1499. DOI: 10.1007/s00216-005-3350-x.

    Article  CAS  Google Scholar 

  • Dominguez Sánchez, P., Tuñón Blanco, P., Fernández Alvarez, J. M., Smyth, M. R., & OKennedy, R. (1990). Flow-injection analysis of hydrogen peroxide using a horseradish peroxidase-modified electrode detection system. Electroanalysis, 2, 303–308. DOI: 10.1002/elan.1140020407.

    Article  Google Scholar 

  • Dunford, H. B. (1991). Horseradish peroxidase: structure and kineticproperties. In J. Everse, K.E. Everse, & M. B. Grisham (Eds.), Peroxidases in chemistry and biology (Vol. 2, pp. 1–24). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Ebersole, R. C., & Ward, M. D. (1988). Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 110, 8623–8628. DOI: 10.1021/ja00234a008.

    Article  CAS  Google Scholar 

  • Hool, K., & Nieman, T. A. (1988). Immobilized luminol chemiluminescence reagent system for hydrogen peroxide determinations in flowing streams. Analytical Chemistry, 60, 834–837. DOI: 10.1021/ac00160a002.

    Article  CAS  Google Scholar 

  • Ivama, V. M., & Serrano, S. H. P. (2003). Rhodium-Prussian Blue modified carbon paste electrode (Rh-PBMCPE) for amperometric detection of hydrogen peroxide. Journal of the Brazilian Chemical Society, 14, 551–555. DOI: 10.1590/s0103-50532003000400010.

    Article  CAS  Google Scholar 

  • Jin, X. F., Jin, X. Y., Liu, X. P., Chen, L. G., Jiang, J. H., Shen, G. L., & Yu, R. Q. (2009). Biocatalyzed deposition amplification for detection of aflatoxin B-1 based on quartz crystal microbalance. Analytica Chimica Acta, 645, 92–97. DOI: 10.1016/j.aca.2009.04.041.

    Article  CAS  Google Scholar 

  • Karyakin, A. A., Karyakina, E. E., & Gorton, L. (1996). Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta, 43, 1597–1606. DOI: 10.1016/0039-9140(96)01909-1.

    Article  CAS  Google Scholar 

  • Khoo, S. B., & Chen, F. (2002). Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: An electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Analytical Chemistry, 74, 5734–5741. DOI: 10.1021/ac0255882.

    Article  CAS  Google Scholar 

  • Kong, Y. T., Boopathi, M., & Shim, Y. B. (2003). Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosensors & Bioelectronics, 19, 227–232. DOI: 10.1016/s0956-5663(03)00216-1.

    Article  CAS  Google Scholar 

  • Liu, H. Y., Malhotra, R., Peczuh, M. W., & Rusling, J. F. (2010). Electrochemical immunosensors for antibodies to peanut allergen Ara h2 using gold nanoparticle-peptide films. Analytical Chemistry, 82, 5865–5871. DOI: 10.1021/ac101110q.

    Article  CAS  Google Scholar 

  • Liu, H. Y., Ying, T. L., Sun, K., & Qi, D. Y. (1996). A reagentless biosensor highly sensitive to hydrogen peroxide based on new methylene blue N dispersed in Nafion® gel as the electron shuttle. Journal of Electroanalytical Chemistry, 417, 59–64. DOI: 10.1016/s0022-0728(96)04756-0.

    Article  CAS  Google Scholar 

  • Lu, S. M., Song, J., & Campbell-Palmer, L. (2009). A modified chemiluminescence method for hydrogen peroxide determination in apple fruit tissues. Scientia Horticulturae, 120, 336–341. DOI: 10.1016/j.scienta.2008.11.003.

    Article  CAS  Google Scholar 

  • Malinauskas, A., Araminaitė, R., Mickevičiūtė, G., & Garjonytė, R. (2004). Evaluation of operational stability of Prussian blue- and cobalt hexacyanoferrate-based amperometric hydrogen peroxide sensors for biosensing application. Materials Science & Engineering C, 24, 513–519. DOI: 10.1016/j.msec.2004.01.002.

    Article  Google Scholar 

  • Meloan, C. E., Mauck, M., & Huffman, C. (1961). Spectrophotometric detetermination of traces of hydrogen peroxide. Analytical Chemistry, 33, 104–106. DOI: 10.1021/ac60169a033.

    Article  CAS  Google Scholar 

  • Meyer, J., & Karst, U. (1999). Workplace monitoring of gas phase hydrogen peroxide by means of fluorescence spectroscopy. Analytica Chimica Acta, 401, 191–196. DOI: 10.1016/s0003-2670(99)00488-2.

    Article  CAS  Google Scholar 

  • Nagaraja, P., Prakash, J., Asha, S. C., Bhaskara, B. L., & Kumar, S. A. (2012). Dibenzazepin hydrochloride as a new spectrophotometric reagent for determination of hydrogen peroxide in plant extracts. Environmental Monitoring and Assessment, 184, 5983–5988. DOI: 10.1007/s10661-011-2395-x.

    Article  CAS  Google Scholar 

  • Patolsky, F., Zayats, M., Katz, E., & Willner, I. (1999). Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: Characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Analytical Chemistry, 71, 3171–3180. DOI: 10.1021/ac9901541.

    Article  CAS  Google Scholar 

  • Prodromidis, M. I., & Karayannis, M. I. (2002). Enzyme based amperometric biosensors for food analysis. Electroanalysis, 14, 241–261. DOI: 10.1002/1521-4109(200202)14:4<241::AID-ELAN241>3.3.CO;2-P.

    Article  CAS  Google Scholar 

  • Reddy, S. M., Jones, J. P., Lewis, T. J., & Vadgama, P. M. (1998). Development of an oxidase-based glucose sensor using thickness-shear-mode quartz crystals. Analytica Chimica Acta, 363, 203–213. DOI: 10.1016/s0003-2670(98)00131-7.

    Article  CAS  Google Scholar 

  • Ricci, F., Amine, A., Palleschi, G., & Moscone, D. (2003). Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors & Bioelectronics, 18, 165–174. DOI: 10.1016/s0956-5663(02)00169-0.

    Article  CAS  Google Scholar 

  • Su, X. D., & Li, S. F. Y. (2001). Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Analytica Chimica Acta, 429, 27–36. DOI: 10.1016/s0003-2670(00)01262-9.

    Article  CAS  Google Scholar 

  • Sunil, K., & Narayana, B. (2008). Spectrophotometry determination of hydrogen peroxide in water and cream samples. Bulletin of Environmental Contamination and Toxicology, 81, 422–426. DOI: 10.1007/s00128-008-9477-7.

    Article  CAS  Google Scholar 

  • Tang, H., Wang, Q., Xie, Q. J., Zhang, Y. Y., Tan, L., & Yao, S. Z. (2007). Enzymatically biocatalytic precipitates amplified antibody-antigen interaction for super low level immunoassay: An investigation combined surface plasmon resonance with electrochemistry. Biosensors & Bioelectronics, 23, 668–674. DOI: 10.1016/j.bios.2007.08.001.

    Article  CAS  Google Scholar 

  • Tsai, W. C., & Cass, A. G. (1995). Ferrocene-modified horseradish peroxidase enyzme electrodes. A kinetic study on reactions with hydrogen peroxide and linoleic hydroperoxide. Analyst, 120, 2249–2254. DOI: 10.1039/an9952002249.

    Article  CAS  Google Scholar 

  • Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825. DOI: 10.1021/cr068123a.

    Article  CAS  Google Scholar 

  • Won, B. Y., Lee, D. W., Shin, S. C., Cho, D. Y., Lee, S. S., Yoon, H. C., & Park, H. G. (2008). A DNA intercalation-based electrochemical method for detection of Chlamydia trachomatis utilizing peroxidase-catalyzed signal amplification. Biosensors & Bioelectronics, 24, 665–669. DOI: 10.1016/j.bios.2008.06.020.

    Article  CAS  Google Scholar 

  • Yang, L., Janle, E., Huang, T. H., Gitzen, J., Kissinger, P. T., Vreeke, M., & Heller, A. (1995). Applications of wired peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors. Analytical Chemistry, 67, 1326–1331. DOI: 10.1021/ac00104a005.

    Article  CAS  Google Scholar 

  • Yoon, H. C., Yang, H. S., & Kim, Y. T. (2002). Bio-catalytic precipitation induced by an affinity reaction on dendrimer-activated surfaces for the electrochemical signalling from immunosensors. Analyst, 127, 1082–1087. DOI: 10.1039/b203299f.

    Article  CAS  Google Scholar 

  • Zhu, L. D., Yang, R. L., Zhai, J. L., & Tian, C. Y. (2007). Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosensors & Bioelectronics, 23, 528–535. DOI: 10.1016/j.bios.2007.07.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Skládal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juřík, T., Skládal, P. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface. Chem. Pap. 69, 167–175 (2015). https://doi.org/10.1515/chempap-2015-0003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0003

Keywords

Navigation