Skip to main content
Log in

The effect of Saccharomyces cerevisiae β-glucan on proliferation, phagocytosis and cytokine production of murine macrophages and dendritic cells

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

β-Glucan is a natural carbohydrate, which is produced by the variety of different organisms - bacteria, fungi, plants, etc. β-Glucan from different sources has been recognized as an active material, which is an immune stimulator for plants, invertebrates and mammals. Saccharomyces cerevisiae, the baker’s yeast, is one of the commonly used sources of β-1,3-glucan. The aim of the present work was to investigate how the different S. cerevisiae β-glucan preparations affect proliferation, phagocytosis and cytokine production of murine macrophages and dendritic cells. In our experiments, BALB/c macrophages and dendritic cells were treated with different β-glucan preparations in vitro. Then cell proliferation (AlamarBlue reagent), ability to phagocytose zymosan particles and production of IL-12 and IFN7 (Western blot) were investigated. Our results showed that β-glucan preparations stimulated proliferation of BALB/c macrophages and dendritic cells in vitro, but acted on phagocytosis and cytokine synthesis in different ways. This study demonstrated that S. cerevisiae β-glucan preparations propelled proliferation of the murine macrophages and dendritic cells and influenced phagocytosis and cytokine production of these cells. These effects can depend on the size of β-glucan molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CR3:

complement receptor-3

DC:

dendritic cell

IN:

water-insoluble S. cerevisiae β-glucan preparation

LPS:

lipopolysaccharide

PAMP:

pathogen-associated molecular pattern

PBS:

phosphate-buffered saline

S1–S5:

soluble S. cerevisiae β-glucan preparations.

References

  • Abbas A.K., Lichtman A.H. & Pillai S. 2015. Cellular and Molecular Immunology. 7th Ed, Saunders Elsevier, Philadelphia, PA, USA.

    Google Scholar 

  • Abdi K., Singh N.J. & Matzinger P. 2012. Lipopolysaccharide-activated dendritic cells: “exhausted” or alert and waiting? J. Immunol. 188: 5981–5989.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A., Anjum F.M., Zahoor T., Nawaz H. & Dilshad S.M.R. 2012. Beta glucan: a valuable functional ingredient in foods. Crit. Rev. Food. Sci. Nutr. 52: 201–212.

    Article  CAS  PubMed  Google Scholar 

  • Baran J., Allendorf D.J., Hong F. & Ross D.G. 2007. Oral β-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice. Folia Histochem. Cytobiol. 45: 107–114.

    CAS  PubMed  Google Scholar 

  • Basic A, Fincher G.B. & Stone B.A. 2009. Chemistry, Biochemistry, and Biology of 1–3 β Glucans and Related Polysaccharides. Academic Press, New York, NY, USA.

    Google Scholar 

  • Brown G.D., Taylor P.R., Reid D.M., Willment J.A., Williams D.L., Martinez-Pomares L., Wong S.Y. & Gordon S. 2002. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196: 407–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budak F., Göral G. & Oral H.B. 2008. Saccharomicies cerevisiae β-glucan induces interferon-7 production in human T-cells via IL12. Turk. J. Immunol. 13: 21–26.

    Google Scholar 

  • Carmona E.M., Kottom D.M., Hebrink D.M., Moua T., Singh R.D., Pagano R.E. & Limper A.H. 2012. Glycosphingolipids mediate Pneumocystis cell wall β-glucan activation of the IL-23/IL-17 axis in human dendritic cells. Am. J. Respir. Cell. Mol. Biol. 47: 50–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan G.C., Chan W.C. & Man-Yuen S.D. 2009. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol. 2: 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J. & Seviour R. 2007. Medicinal importance of fungal β-(1→3),(1→6)-glucans. Mycol. Res. 3: 635–652.

    Article  CAS  Google Scholar 

  • Chen Y., Chen Y., Yin D., Wang Y., Liu Z., An N., Wen F., Li N., Xin J., Hu X., Zhang H.J. & Yin W. 2016. The Sca-1+ mesenchymal stromal cells modulate macrophage commitment and function. Turk. J. Biol. 40: 473–483.

    Article  CAS  Google Scholar 

  • Dennehy K.M., Willment J.A., Williams D.L. & Brown G.D. 2009. Reciprocal regulation of IL-23 and IL-12 following co-activation of dectin-1 and TLR signaling pathways. Eur. J. Immunol. 39: 1379–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A. & Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  • Fuentes A.L., Millis L. & Sigola L.B. 2011. Laminarin, a soluble β-glucan, inhibits macrophage phagocytosis of zymosan but has no effect on lipopolysaccharide mediated augmentation of phagocytosis. Int. Immunopharmacol. 11: 1939–1945.

    Article  CAS  PubMed  Google Scholar 

  • Gersuk G.M., Underhill D.M., Zhu L. & Marr K.A. 2006. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states, J. Immunol. 176: 3717–3724.

    Article  CAS  Google Scholar 

  • Giaimis J., Lombard Y., Fonteneau P., Muller C.D., Levy R. & Makaya-Kumba M. 1993. Both mannose and β-glucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. J. Leukoc. Biol. 54: 564–571.

    Article  CAS  PubMed  Google Scholar 

  • Gorman A., McCarthy J., Finucane J., Reville W. & Cotter T. 1996. Technics in Apoptosis, A User’s Guide. Portland Press, London, UK.

    Google Scholar 

  • Granucci F., Ostuni R. & Zanoni I. 2012. Generation of mouse bone marrow-derived dendritic cells (BM-DCs). Bio-protocol 2: e226.

    Article  Google Scholar 

  • Havrlentová M., Petruláková Z., Burgárová A., Gago F., Hlinková A. & Šturdík E. 2012. Cereal β-glucans and their significance for the preparation of functional foods - a review. Czech J. Food Sci. 29: 1–14.

    Google Scholar 

  • Huang H., Ostroff G.R., Lee C.K., Agarwal S., Ram S., Rice P.A., Specht C.A. & Levitz S.M. 2012. Relative contributions of dectin-1 and complement to immune responses to particulate β-glucans, J. Immunol. 189: 312–317.

    Article  CAS  Google Scholar 

  • Huang H., Ostroff C.R., Lee C.K., Wang J.P., Specht CA. & Levitz S.M. 2009. Distinct patterns of dendritic cell cytokine release stimulated by fungal β-glucans and toll-like receptor agonists. Infect. Immun. 77: 1774–1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter Jr. K.W., Gault R.A. & Berner M.D. 2002. Preparation of microparticulate β-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol. 35: 267–271.

    Article  CAS  PubMed  Google Scholar 

  • Javmen A., Grigiškis S. & Gliebuė R. 2012. β-Glucan extraction from Saccharomyces cerevisiae yeast using Actinomyces rut-gersensis 88 yeast lysing enzymatic complex. Biologija 58: 51–59.

    Article  CAS  Google Scholar 

  • Javmen A., Grigiškis S., Rudenkov M. & Mauricas M. 2013. Purification and partial characterization of a novel β-1,3-endoglucanase from Streptomyces rutgersensis. Protein J. 32: 411–417.

    Article  CAS  PubMed  Google Scholar 

  • Javmen A., Nemeikaitė-Čėnienė A., Grigiškis S., Jonauskienė L, Rudenkov M., Kačianauskas D. & Mauricas M. 2015. S. cerevisiae β-glucan reduced viability of mouse hepatoma cells in vitro, Turk. J. Biol. 39: 562–566.

    CAS  Google Scholar 

  • Jiang H.R., Muckersie E., Robertson M., Xu H., Liversidge J. & Forrester J.V. 2002. Secretion of interleukin-10 or interleukin-12 by LPS-activated dendritic cells is critically dependent on time of stimulus relative to initiation of purified DC culture. J. Leukoc. Biol. 72: 978–985.

    CAS  PubMed  Google Scholar 

  • Kikuchi T., Ohno N. & Ohno T. 2002. Maturation of dendritic cells induced by Candida β-D-glucan. Int. Immunopharma-col., 2: 1503–1508.

    Article  CAS  Google Scholar 

  • Li B., Cai Y., Qi C., Hansen R., Ding C, Mitchell C.T. & Yan J. 2010. Orally administered particulate β-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin. Cancer. Res. 16: 5153–5164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda Y., Inoue H., Ohta H., Miyake A., Konishi M. & Nanba H. 2013. Oral administration of soluble β-glucans extracted from Grifola frondosa induces systemic antitumour immune response and decreases immunosuppression in tumour-bearing mice. Int. J. Cancer. 133: 108–120.

    Article  CAS  PubMed  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  • Muramatsu D., Kawata K., Aoki S., Uchiyama H., Okabe M., Miyazaki T., Kida H. & Iwai A. 2014. Stimulation with the Aureobasidium, pullulans-produced β-glucan effectively induces interferon stimulated genes in macrophage-like cell lines. Sci. Rep. 4: 4777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen T.H., Fleet G.H. & Rogers P.L. 1998. Composition of the cell walls of several yeast species. Appl. Microbiol. Biotechnol. 50: 206–212.

    Article  CAS  PubMed  Google Scholar 

  • Noss I., Doekes G., Thorne P.S., Heederik D.J.J. & Wouters I.M. 2013. Comparison of the potency of a variety of β-glucans to induce cytokine production in human whole blood. Innate Immun. 19: 10–19.

    Article  CAS  PubMed  Google Scholar 

  • Novak M. & Vetvicka V. 2008. β-Glucans, history and the present: immunomodulatory aspects and mechanisms of action. J. Im-munotoxicol. 5: 47–57.

    CAS  Google Scholar 

  • Novak M. & Vetvicka V. 2009. Glucans as biological response modifiers. Endocr. Metab. Immune Disord. Drug Targets 9: 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Pelizon A.C., Kaneno R., Soares A.M.V.C., Meira D.A. & Sar-tori A. 2005. Immunomodulatory activities associated with β-glucan derived from Saccharomyces cerevisiae. Physiol. Res. 54: 557–564.

    CAS  Google Scholar 

  • Saito Y., Yanagawa Y., Kikuchi K., Iijima N., Iwabuchi K. & Onoé K. 2006. Low-dose lipopolysaccharide modifies the production of IL-12 by dendritic cells in response to various cytokines. J. Clin. Exp. Hematop. 46: 31–36.

    Article  PubMed  Google Scholar 

  • Shokri H., Asadi F. & Khosravi A.R. 2008. Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Nat. Prod. Res. 22: 414–421.

    Article  CAS  Google Scholar 

  • Sima P., Vannucci L. & Vetvicka V. 2015. Glucans and cancer: historical perspective. Cancer Transi. Med. 1: 209–214.

    Article  Google Scholar 

  • Soltanian S., Stuyven E., Cox E., Sorgeloos P. & Bossier P. 2009. β-Glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35: 109–138.

    Article  CAS  PubMed  Google Scholar 

  • Trouvelot S., Heloir M.C., Poinssot B., Gauthier A., Paris F., Guillier C, Combler M., Trdâ L., Daire X. & Adrian M. 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front. Plant Sci. 5: 592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetvicka V 2011. Glucan-immunostimulant, adjuvant, potential drug. World J. Clin. Oncol. 2: 115–119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetvicka V, Terayama K., Mandeville R., Brousseau P., Kourni-kakis B. & Ostroff G. 2002. Pilot study: orally-administered yeast 1,3-glucan prophylactically protects against anthrax infection and cancer in mice. J. Am. Nutraceut. Assoc. 5: 1–6.

    Google Scholar 

  • Vetvicka V. & Vetvickova J. 2012. β-1,3-Glucan in cancer treatment. Am. J. Immunol. 8: 38–43.

    Article  CAS  Google Scholar 

  • Vetvicka V. & Vetvickova J. 2014. Comparison of immunological effects of commercially available β-glucans. Appl. Sci. Rep. 1: 2.

    Article  Google Scholar 

  • Vetvicka V & Vetvickova J. 2016. Comparison of immunological effects of commercially available β-glucans: part II. Int. Clin. Pathol. J. 2: 00053.

    Google Scholar 

  • Vetvicka V & Vetvickova J. 2016. Comparison of immunological effects of commercially available β-glucans: part III. Int. Clin. Pathol. J. 2: 00046.

    Google Scholar 

  • Yiannikouris A., François J., Poughon L., Dussap C.G., Bertin G., Jeminet G. & Jouany J.P. 2004. Alkali extraction of β-D-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. J. Agric. Food Chem. 52: 3666–3673.

    Article  CAS  PubMed  Google Scholar 

  • Zanoni I., Ostuni R. & Granucci F. 2012. Generation of mouse bone marrow-derived macrophages (BM-MFs). Bio-protocol. 2: e225.

    Article  Google Scholar 

  • Zhang J.M. & An J. 2007. Cytokines, inflammation and pain. Int. Anesthesiol. Clin. 45: 27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Javmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javmen, A., Nemeikaitė-Čėnienė, A., Grigiškis, S. et al. The effect of Saccharomyces cerevisiae β-glucan on proliferation, phagocytosis and cytokine production of murine macrophages and dendritic cells. Biologia 72, 561–568 (2017). https://doi.org/10.1515/biolog-2017-0063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0063

Key words

Navigation