Skip to main content
Log in

Communities of oribatid mites (Acari: Oribatida) of naturally regenerating and salvage-logged montane spruce forests of Šumava Mountains

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The main aim of this study was to describe and compare communities of oribatid mites of selected areas in montane spruce forests near Březník in the Šumava National Park, where different management strategies were used after the spruce dieback caused by massive bark beetle gradation more than 15 years ago. Naturally regenerating and salvage-logged areas were compared. Significant differences were found in the oribatid mite community composition between differently managed areas. The oribatid mite community in naturally regenerating areas was in better shape and its abundance and species composition was similar to the community of a control area in a mature and healthy spruce forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balogh J. & Mahunka S. 1983. Primitive Oribatids of the Palaearctic Region. Series: The Soil Mites of the World. Akadémia Kiadó, Budapest, 372 pp. ISBN-10: 0444996540

    Google Scholar 

  • Bryndová M. 2013. Vliv kalamitní těžby na populaci želvušek (Tardigrada) v horských smrčinách NP Šumava [Effect of salvage logging on soil tardigrade population in mountain spruce forest of the Šumava Nation Park after 16 years from treatment]. Unpublished Mgr. thesis, Faculty of Science, University of South Bohemia, 43 pp.

    Google Scholar 

  • Caruso T., Pigino G., Bernini F., Bargagli R. & Migliorini M. 2007. The Berger-Parker index as an effective tool for monitoring the biodiversity of disturbed soils: a case study on Mediterranean oribatid (Acari: Oribatida) assemblages. Biodivers. Conserv. 16: 3277–3285. DOI: https://doi.org/10.1007/s10531-006-9137-3

    Article  Google Scholar 

  • Coleman D.C., Crossley D.A. jr. & Hendrix P.F. 2004. Foundamentals of Soil Ecology. Academic Press Inc., 2nd edn, San Diego, 408 pp. ISBN: 9780121797263

    Google Scholar 

  • Dahlberg A., Schimmel J., Taylor A.F.S. & Johannesson H. 2001. Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biol. Conserv. 100: 151–161. DOI: https://doi.org/10.1016/S0006-3207(00)00230-5

    Article  Google Scholar 

  • Domes K., Scheu S. & Maraun M. 2007. Resources and sex: soil re-colonization by sexual and parthenogenetic oribatid species. Pedobiologia 51: 1–11. DOI: https://doi.org/10.1016/j.pedobi.2006.11.001

    Article  Google Scholar 

  • Farská J., Prejzková K. & Rusek J. 2014a. Management intensity affects traits of soil microarthropod community in montane spruce forest. Appl. Soil Ecol. 75: 71–79. DOI: https://doi.org/10.1016/j.apsoil.2013.11.003

    Article  Google Scholar 

  • Farská J., Prejzková K., Starý J. & Rusek J. 2014b. Soil mi-croarthropods in non-intervention montane spruce forest regenerating after bark-beetle outbreak. Ecol. Res. 29: 1087–1096. DOI: https://doi.org/10.1007/s11284-014-1197-3

    Article  Google Scholar 

  • Giljarov M.S. & Krivoluckij D.A. (eds). 1975. Opredelitel obitayushchikh v pochve kleshche˘ı. Sarcoptiformes. Nauka, Moscow, 492 pp.

    Google Scholar 

  • Griffin J.M., Turner M.G. & Simard M. 2011. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Forest Ecol. Manag. 261: 1077–1089. DOI: https://doi.org/10.1016/j.foreco.2010.12.031

    Article  Google Scholar 

  • Hais M. & Kučera T. 2008. Surface temperature change of spruce forest as a result of bark beetle attack: Remote sensing and GIS approach. Eur. J. For. Res. 127: 327–336. DOI: https://doi.org/10.1007/s10342-008-0208-8

    Article  Google Scholar 

  • Hamilton W.D. 1980. Sex versus non-sex versus parasite. Oikos 35: 282–290. DOI: https://doi.org/10.2307/3544435

    Article  Google Scholar 

  • Hartenstein R.C. 1962. Soil Oribatei. Feeding specifity among forest soil Oribatei (Acarina). Ann. Entomol. Soc. Am. 55: 202–206. DOI: https://doi.org/10.1093/aesa/55.2.202

    Article  Google Scholar 

  • Jonášová M. & Prach K. 2004. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark-beetle outbreak. Ecol. Eng. 23: 15–27. DOI: https://doi.org/10.1016/j.ecoleng.2004.06.010

    Article  Google Scholar 

  • Jonášová M. & Prach K. 2008. The influence of bark beetle outbreak vs. salvage logging onground layer vegetation in Central European mountain spruce forests. Biol. Conserv. 141: 1525–1535. DOI: https://doi.org/10.1016/j.biocon.2008.03.013

    Article  Google Scholar 

  • Krausová M. 2011. Odhad dostupnosti živin v půdě asanovaných a přirozeně se vyvíjejících porostů po kůrovcové kalamitě na území NP Šumava [Estimate of available nutrients in forest soil after bark beetle outbreak of stands after salvage logging and of stands left without intervention in the Šumava National park]. Unpublished Bc. thesis, Faculty of Science, University of South Bohemia, 41 pp.

    Google Scholar 

  • Kunst M. 1971. Nadkohorta pancířníci–Oribatei [Supercohort moss mites–Oribatei], pp. 531–580. In: Daniel M. & Černý V. (eds), Klíč zvířeny ČSSR, díl IV. Zelvušky, jazyčnatky, klepítkatci: sekáči, pavouci, štírci, roztoči, Československá akademie věd, Praha, 603 pp.

    Google Scholar 

  • Lindberg N. & Bengtsson J. 2006. Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos 114: 494–506. DOI: https://doi.org/10.1111/j.2006.0030-1299.14396.x

    Article  Google Scholar 

  • Lindenmayer D.B. & Noss R.F. 2006. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20: 949–958. DOI: https://doi.org/10.1111/j.1523-1739.2006.00497.x

    Article  CAS  PubMed  Google Scholar 

  • Lóšková J., Luptáčik P., Miklisová D. & Kováč L. 2013. The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol. 55: 131–138. DOI: https://doi.org/10.1016/j.ejsobi.2013.01.001

    Article  Google Scholar 

  • Luptáčik P., Miklisová D. & Kováč L. 2012. Diversity and community structure of soil Oribatida (Acari) in an arable field with alluvial soils. Eur. J. Soil Biol. 50: 97–105. DOI: https://doi.org/10.1016/j.ejsobi.2011.12.008

    Article  Google Scholar 

  • Luxton M. 1972. Studies on the oribatid mites of a Danish beech wood soil, I. Nutritional biology. Pedobiologia 12: 434–463.

    Google Scholar 

  • Maraun M., Fronczek S., Marian F., Sandmann D. & Scheu S. 2013. More sex at higher altitudes: Changes in the frequency of parthenogenesis in oribatid mites in tropical montane rain forests. Pedobiologia 56: 185–195. DOI: https://doi.org/10.1016/j.pedobi.2013.07.001

    Article  Google Scholar 

  • Maraun M., Salamon J.A., Schneider K., Schaefer M. & Scheu S. 2003. Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biol. Biochem. 35: 1387–1394. DOI: https://doi.org/10.1016/S0038-0717(03)00218-9

    Article  CAS  Google Scholar 

  • Marshall V.G. 1972. Comparison of two methods of estimating efficiency of funnel extractors for soil microarthropods. Soil Biol. Biochem. 4: 417–426. DOI: https://doi.org/10.1016/0038-0717(72)90056-9

    Article  Google Scholar 

  • Marshall V.G. 2000. Impact of forest harvesting on biological processes in northern forest soil. Forest Ecol. Manag. 133: 43–60. DOI: https://doi.org/10.1016/S0378-1127(99)00297-2

    Article  Google Scholar 

  • Mumladze L., Murvanidze M., Maraun M. & Salakaia M. 2015. Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus). Exp. Appl. Acarol. 66: 41–51. DOI: https://doi.org/10.1007/s10493-015-9893-4

    Article  PubMed  Google Scholar 

  • Murvanidze M., Mumladze M., Arabuli T. & Kvavadze E. 2013. Oribatid mite colonization of sand and manganese tailing sites. Acarologia 53: 203–215. DOI: https://doi.org/10.1051/acarolo-gia/20132089

    Article  Google Scholar 

  • Niedbała W. 1980. Mechowce — roztocze ekosystémów ladowych [Oribatida — Mites of Terrestrial Ecosystems]. PWN, Warsava, 255 pp.

    Google Scholar 

  • Norton R.A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of Astigmata, pp. 99–135. In: Houck M.A. (ed.), Mites: Ecological and Evolutionary Analyses of Life-History Patterns, Chapman and Hall, New York, 357 pp. ISBN: 978-1-4615-2389-5

    Chapter  Google Scholar 

  • Norton R.A. & Behan-Pelletier V.M. 2009. Oribatida, pp. 430–564. In: Krantz G.W. & Walter D.E. (eds), A Manual of Acarology, 3rd ed. Texas Tech University Press, Lubbock, Texas, 807 pp. ISBN: 978-0-89672-620-8

    Google Scholar 

  • Ojala R. & Huhta V. 2001. Dispersal of microarthropods in forest soil. Pedobiologia 45: 443–450. DOI: https://doi.org/10.1078/0031-4056-00098

    Article  Google Scholar 

  • Pavlas J. 2014. Vliv disturbance lesa na teplotu a vlhkost půdy [Influence of the forest disturbances on the temperature and humidity of soil]. Unpublished Mgr. thesis, Faculty of Science, University of South Bohemia, 60 pp.

    Google Scholar 

  • Seniczak S. & Stefaniak O. 1978. The microflora of the alimentary canal of Oppia nitens (Acarina, Oribatei). Pedobiologia 18: 110–119.

    Google Scholar 

  • Schuster R. 1956. Der Anteil der Oribatiden an den Zersetzungsvorgängen im Boden. Z. Morphol. Okol. Tiere 45 (1): 1–33. DOI: https://doi.org/10.1007/BF00699814

    Article  Google Scholar 

  • Shannon C.E. & Weaver W. 1949. The mathematical theory of communication. Illinois University Press, Urbana USA, 282 pp. ISBN: 0-252-72546-8

    Google Scholar 

  • Siepel H. 1996. The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites. Biodivers. Lett. 3: 26–34. DOI: https://doi.org/10.2307/2999707

    Article  Google Scholar 

  • Siira-Pietikäinen A., Penttinen R. & Huhta V. 2008. Oribatid mites (Acari: Oribatida) in boreal forest floor and decaying wood. Pedobiologia 52: 111–118. DOI: https://doi.org/10.1016/j.pedobi.2008.05.001

    Article  Google Scholar 

  • Skuhravý V. 2002. Lýkožrout smrkový v Bavorském lese a na Šumavě [Eight-toothed spruce bark beetle in the Bavarian forest and Šumava Mts]. ĝiva 5: 220–222.

    Google Scholar 

  • Starý J. 1990. Ekologie pancířníků (Acari: Oribatida) v sukcesní řadě půd [Ecology of oribatid mites (Acari: Oribatida) during succession in brown soils]. Unpublished PhD. thesis, Institute of Soil Biology, ASCR, České Budějovice, 179 pp.

    Google Scholar 

  • Starý J. & Matějka K. 2008. Pancířníci (Acari: Oribatida) vybraných lokalit horských lesů na Šumavě. Průběžná zpráva z řešení projektu 2B06012 Management biodiversity v Krkonoších a na Šumavě v roce 2007 [Oribatid mites (Acari: Oribatida) of selected localities at montain forests on the Šumava Mts.. Report of the project 2B06012: Biodiversity management in the Krkonoše Mts and the Šumava Mts in 2007], https://doi.org/www.infodatasys.cz/biodivkrsu/rep2007_Oribatida.pdf

    Google Scholar 

  • Strenzke K. 1952. Untersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands. Zoologica 37 (104), 172 pp.

  • Svoboda M., Janda P., Nagel T.A., Fraver S., Rejzek J. & Bače R. 2012. Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian forest, Czech Republic. J. Veg. Sci. 23: 86–97. DOI: https://doi.org/10.1111/j.1654-1103.2011.01329.x

    Article  Google Scholar 

  • Šantrůčková H., Vrba J., Křenová Z., Svoboda M., Benčoková A., Edwards M., Fuchs R., Hais M., Hruška J., Kopáček J., Matějka K. & Rusek J. 2010. Co vyprávějí šumavské smrčiny [What can the spruce forests of Šumava Mts. narrate]. Správa NP a CHKO Šumava, Vimperk, 153 pp.

    Google Scholar 

  • Šmilauer P. & Lepš J. 2014. Multivariate analysis of ecological data using Canoco 5. 2nd edn. Cambridge University Press, 362 pp. ISBN: 978-1-107-69440-8

    Book  Google Scholar 

  • Velíšek L. 2014. Společenstva mnohonožek a stonožek přirozeně se vyvíjejících a asanovaných horských smrčin Šumavy [Communities of millipedes and centipedes in the naturally disturbed and rehabilitated mountain spruce forests of the Šumava Mts]. Unpublished Mgr. thesis, Faculty of Science, University of South Bohemia, 71 pp.

    Google Scholar 

  • Weigmann G. 2006. Die Tierwelt Deutschlands, Teil 76: Hornmilben (Oribatida). Goecke and Evers, Keltern, 520 pp. ISBN: 978-3-937783-18-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra KokoŘová.

Electronic supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KokoŘová, P., Starý, J. Communities of oribatid mites (Acari: Oribatida) of naturally regenerating and salvage-logged montane spruce forests of Šumava Mountains. Biologia 72, 445–451 (2017). https://doi.org/10.1515/biolog-2017-0050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0050

Key words

Navigation