Skip to main content

Advertisement

Log in

Transcriptome analysis in leaves of rice (Oryza sativa) under high manganese stress

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Elucidating molecular mechanisms of rice responses to high manganese (Mn) stress is crucially important to manganese-resistant gene cloning, functional analysis and other research work. In the present study, we analyzed the gene expression in leaves of Mn-sensitive rice (Oryza sativa cv. Xinxiangyou 640) exposed to high Mn stress by high-throughput sequencing. There were about 2831 differently expressed genes [the false discovery rate (FDR) ≤ 0.001 and log2ratio(Mn/CK) ≥ 1] among 21258 genes, in which 1336 appeared to be up-regulated and 1495 appeared to be down-regulated in rice treated with high level of Mn compared with the normal level of Mn. Under high Mn stress, the differentially expressed genes were relating to various transcription factors (TFs), large number of transporters, numerous transferase proteins, catalytic proteins, etc, involving in the major primary and secondary metabolisms. Among the rest, the genes of WRKY family were all significantly up-regulated whereas all the Aux/IAA genes were strongly down-regulated. Potassium transporters were also significantly up-regulated whereas sodium transporters were strongly down-regulated. The expression patterns of representative related genes were further confirmed by fluorescent quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). Manganese resistance mechanism in rice is very complex and is a consequence of coordinated expression of a large number of genes. This data resource contributed substantially to biological and physiological research on rice genes, and to comparative analysis of Mn-specific responses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie J.M., Halfhill M.D., Ranjan P., Rao M.R., Saxton A.M., Yuan J.S. & Stewart C. N. 2008. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol. 8: 87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal M., Hao Y., Kapoor A., Dong C.H., Fujii H., Zheng X.W. & Zhu J.K. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 281: 37636–37645.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S. & Goswami R. 2010. GST profile expression study in some selected plants: in silico approach. Mol. Cell. Biochem. 336: 109–126.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty D., Trivedi P.K., Misra P., Tiwari M., Shri M., Shukla D., Kumar S., Rai A., Pandey A., Nigam D., Tripathi R.D. & Tuli R. 2009. Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74: 688–702.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y.H., Yang X.Y., He K., Liu M.H., Li J.G., Gao Z.F., Lin Z.Q., Zhang Y.F., Wang X.X., Qiu X.M., Shen Y.P., Zhang L., Deng X.H., Luo J.C., Deng X.W., Chen Z.L., Gu H.Y. & Qu L.J. 2006. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol. 60: 107–124.

    Article  CAS  Google Scholar 

  • Chen Z.H., Fujii Y., Yamaji N., Masuda S., Takemoto Y., Kamiya T., Yusuyin Y., Iwasaki K., Kato S., Maeshima M., Ma J.F. & Ueno D. 2013. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J. Exp. Bot. 64: 4375–4387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conyers M.K., Uzen N.C., Helyor K.R., Poile G.J. & Culist B.R. 1997. Temporal variation in soil acidity. Aust. J. Soil Res. 35: 1115–1129.

    Article  Google Scholar 

  • Dai X.Y., Xu Y.Y., Ma Q.B., Xu W.Y., Wang T., Xue Y.B. & Chong K. 2007. Overexpression of a R1R2R3 MYB Gene, OsMYB3R–2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 143: 1–13.

    Article  CAS  Google Scholar 

  • Delhaize E., Kataoka T., Hebb D.M., White R.G. & Ryan P.R. 2003. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15: 1131–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirevska-Kepova K., Simova-Stoilova L., Stoyanova Z., Hölzer R. & Feller U. 2004. Biochemical changes in barley plants after excess supply of copper and manganese. Environ. Exp. Bot. 2: 253–266.

    Article  CAS  Google Scholar 

  • Devaiah B.N., Karthikeyan A.S. & Raghothama K.G. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 43: 1789–1801.

    Article  Google Scholar 

  • Dube B.K., Khurana N. & Chatterjee C. 2002. Yield, physiology and productivity of rice under manganese stress. Indian J. Plant Physiol. 7: 392–395.

    CAS  Google Scholar 

  • Fecht-Christoffers M.M., Führs H., Braun H.P. & Horst W.J. 2006. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol. 140: 1451–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fecht-Christoffers M.M., Maier P. & Horst W.J. 2003. Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Plant Physiol. 117: 237–244.

    Article  CAS  Google Scholar 

  • Führs H., Hartwig M., Molina L.E.B., Heintz D., Dorsselaer A.V., Braun H.P. & Horst W.J. 2008. Early manganese–toxicity response in Vigna unguiculata L.–a proteomic and transcriptomic study. Proteomics 8: 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Hao Q.N., Zhou X.A., Sha A.H., Wang C., Zhou R. & Chen S.L. 2011. Identification of genes associated with nitrogen–use efficiency by genome–wide transcriptional analysis of two soybean genotypes. BMC Genomics 12: 525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi K.D., Korenkov V.D., Wilaganowski N.L. & Wagner G.J. 2000. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124: 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C.F., Yamaji N., Mitani N., Yano M., Nagamura Y. & Ma J.F. 2009. Bacterial–Type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21: 655–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J., Wang J.F., Wang Q.H. & Zhang H.S. 2005. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Sequence 16: 130–136.

    Article  CAS  PubMed  Google Scholar 

  • Huang J., Yang X., Wang M.M., Tang H.J., Ding L.Y., Shen Y. & Zhang H.S. 2007. A novel rice C2H2–type zinc finger protein lacking DLN–box/EAR–motif plays a role in salt tolerance. Bioch. Biophys. Acta 1769: 220–227.

    CAS  Google Scholar 

  • Kilili K.G., Atanassova N., Vardanyan A., Clatot N., Al-Sabarna K., Kanellopoulos P.N., Makris A.M. & Kampranis S.C. 2004. Differential roles of tau class glutathione S–transferases in oxidative stress. J. Biol. Chem. 279: 24540–24551.

    Article  CAS  PubMed  Google Scholar 

  • Kim D.Y., Bovet L., Maeshima M., Martinoia E. & Lee Y. 2007. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 50: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Kiribuchi K., Jikumaru Y., Kaku H., Minami E., Hasegawa M., Kodama O., Seto H., Okada K., Nojiri H. & Yamane H. 2005. Involvement of the basic helix–loop–helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci. Biotech. Bioch. 69: 1042–1044.

    Article  CAS  Google Scholar 

  • Kiribuchi K., Sugimori M., Takeda M., Otani T., Okada K., Onodera H., Ugaki M., Tanaka Y., Tomiyama-Akimoto C., Yamaguchi T., Minami E., Shibuya N., Omori T., Nishiyama M., Nojiri H. & Yamane H. 2004. RERJ1, a jasmonic acid–responsive gene from rice, encodes a basic helix–loop–helix protein. Biochem. Biophys. Res. Commun. 325: 857–863.

    Article  CAS  PubMed  Google Scholar 

  • Lee T.J., Luitel B.P. & Kang W.H. 2011. Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa L. ssp. campestris). Hortic. Environ. Biotech. 52: 252–258.

    Article  CAS  Google Scholar 

  • Li P., Song A.L., Li Z.J., Fan F.L. & Liang Y.C. 2012. Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil 354: 407–419.

    Article  CAS  Google Scholar 

  • Li P., Song A.L., Li Z.J., Fan F.L. & Liang Y.C. 2015. Silicon ameliorates manganese toxicity by regulating physiological processes and expression of genes relating to photosynthesis in rice (Oryza sativa L.). Plant Soil 397: 289–301.

    Article  CAS  Google Scholar 

  • Lin C.Y., Trinh N.N., Fu S.F., Hsiung Y.C., Chia L.C., Lin C.W. & Huang H. J. 2013. Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol. Biol. 81: 507–522.

    Article  CAS  PubMed  Google Scholar 

  • Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real–time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lopez–Millan A.F., Ellis D.R. & Grusak M.A. 2004. Identification and characterization of several new members of the zip family of metal ion transporters in Medicago truncatula. Plant Mol. Biol. 54: 583–596.

    Article  CAS  PubMed  Google Scholar 

  • Lyubenova L., Götz C., Golan-Goldhirsh A. & Schröder P. 2007. Direct effect of Cd on glutathione S–transferase and glutathione reductase from Calystegia sepium. Int. J. Phytore-mediat. 9: 465–473.

    Article  CAS  Google Scholar 

  • Ma Q.B., Dai X.Y., Xu Y.Y., Guo J., Liu Y.J., Chen N., Xiao J., Zhang D.J. & Xu Z.H. 2009. Enhanced tolerance to chilling stress in OsMYB3R–2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol. 150: 244–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfie S.M. & Taylor G.J. 1992. The effects of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Physiol. Plant. 85: 467–475.

    Article  CAS  Google Scholar 

  • Marrs K.A. 1996. The functions and regulation of glutathione S–transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127–158.

    CAS  Google Scholar 

  • Marschner P. 2012. Mineral Nutrition of Higher Plants. Academic Press, Boston, MA.

    Google Scholar 

  • Millaleo R., Reyes-Diaz M., Alberdi M., Ivanov A.G., Krol M. & Huner N.P. 2013. Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J. Exp. Bot. 64: 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Milner M.J., Seamon J., Craft E. & Kochian L. V. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J. Exp. Bot. 64: 369–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monni S., Uhlig C., Hansen E. & Magel E. 2001. Ecophysiological responses of Empetrum nigrumto heavy metal pollution. Environ. Pollut. 112: 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Moons A. 2003. Ospdr9, which encodes a PDR–type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett. 553: 370–376.

    Article  CAS  PubMed  Google Scholar 

  • Moons A. 2008. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta 229: 53–71.

    Article  CAS  PubMed  Google Scholar 

  • Moroni J.S., Briggs K.G. & Taylor G.J. 1991. Chlorophyll content and leaf elongation rate in wheat seedlings as a measure of manganese tolerance. Plant Soil 136: 1–9.

    Article  CAS  Google Scholar 

  • Norton G.J., Lou-Hing D.E., Meharg A.A. & Price A.H. 2008. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J. Exp. Bot. 59: 2267–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogo Y., Itai R.N., Nakanishi H., Inoue H., Kobayashi T., Suzuki M., Takahashi M., Mori S. & Nishizawa N.K. 2006. Isolation and characterization of IRO2, a novel iron–regulated bHLH transcription factor in graminaceous plants. J. Exp. Bot. 57: 2867–2878.

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y., Itai R.N., Nakanishi H., Kobayashi T., Takahashi M., Mori S. & Nishizawa N.K. 2007. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe–deficient conditions. Plant J. 51: 366–377.

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L., Hallak-Herr E., Rozenberg M., Cohen M., Goloubinoff P., Kaplan A. & Mittler R. 2002. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J. 31: 319–330.

    Article  CAS  PubMed  Google Scholar 

  • Rea P.A. 2007. Plant ATP–binding cassette transporters. Annu. Rev. Plant Biol. 58: 347–375.

    Article  CAS  PubMed  Google Scholar 

  • Rezai K. & Farboodnia T. 2008. Manganese toxicity effects on chlorophyll content and antioxidant enzymes in pea plant (Pisum sativum L. cv. qazvin). Agricul. J. 3: 454–458.

    CAS  Google Scholar 

  • Ribera A.E., Reyes-Díaz M.M., Alberdi M.R. & Alvarez-Cortez D.A. 2013. Photosynthetic impairment caused by manganese toxicity and associated antioxidative responses in perennial ryegrass. Crop Pasture Sci. 64: 696–707.

    Article  CAS  Google Scholar 

  • Salekdeh G.H., Siopongco J., Wade L.J., Ghareyazie B. & Bennett J. 2002. A proteomic approach to analyzing drought–and salt–responsiveness in rice. Field Crop. Res. 76: 199–219.

    Article  Google Scholar 

  • Sasaki T., Matsumoto T., Yamamoto K., Sakata K., Baba T., Katayose Y., et al. 2002. The genome sequence and structure of rice chromosome I. Nature 420: 312–316.

    Article  CAS  PubMed  Google Scholar 

  • Schlichting E. & Sparrow L. 1988. Distribution and amelioration of manganese toxic soils, pp. 277–288. In: Graham R.D., et al. (eds), Manganese in Soils and Plants. Kluwer Academic Publishers, Dordrecht, the Nederland.

    Chapter  Google Scholar 

  • Shen Y., Zhang Y., Chen J., Lin H., Zhao M., Peng H., Liu L., Yuan G., Zhang S., Zhang Z. & Pan G. 2013. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol. Plant. 147: 270–282.

    Article  CAS  PubMed  Google Scholar 

  • Shi T., Gao Z., Wang L., Zhang Z., Zhuang W., Sun H. & Zhong W. 2012. Identification of differentially–expressed genes associated with pistil abortion in Japanese apricot by genome–wide transcriptional analysis. PloS One 7: e47810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Q.H., Zhu Z.J., Xu M., Qian Q.Q. & Yu J.Q. 2005. Effect of excess manganese on the antioxidant systemin Cucumis sativus L. under two light intensities. Environ. Exp. Bot. 58: 197–205.

    Article  CAS  Google Scholar 

  • Sudo E., Itouga M., Yoshida-Hatanaka K., Ono Y. & Sakakibara H. 2008. Gene expression and sensitivity in response to copper stress in rice leaves. J. Exp. Bot. 59: 3465–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S.J., Guo S.Q., Yang X., Bao Y.M., Tang H.J., Sun H., Huang J. & Zhang H.S. 2010. Functional analysis of a novel Cys2/His2–type zinc finger protein involved in salt tolerance in rice. J. Exp. Bot. 61: 2807–2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y.J., Zhang Z.G., He X.J., Zhou H.L., Wen Y.X., Dai J.X., Zhang J.S. & Chen S.Y. 2003. A rice transcription factor OsbHLH1 is involved in cold stress response. Theor. Appl. Genet. 107: 1402–1409.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y., Xu L., Chen Y., Shen H., Gong Y., Limera C. & Liu L. 2013. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing. PLoS One 8: e66539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W., Zhang Y., Han L., Guan Z.Q. & Chai T.Y. 2008. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep. 27: 795–803.

    Article  CAS  PubMed  Google Scholar 

  • Williams L.E. & Pittman J.K. 2010. Dissecting pathways involved in manganese homeostasis and stress in higher plant cells, pp. 95–117. In: Hell R. & Mendal R.R., (eds) Cell Biology of Metals and Nutrients. Plant Cell Monographs 17, Springer, Berlin.

    Article  CAS  Google Scholar 

  • Wu J.Z., Maehara T., Shimokawa T., Yamamoto S., Harada C., Takazaki Y., Ono N., Mukai Y., Koike K., Yazaki J., Fujii F., Shomura A., Ando T., Kono I., Waki K., Yamamoto K., Yano M., Matsumotoand T. & Sasaki T. 2002. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14: 525–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W.S. & Chen B.S. 2007. Identifying stress transcription factors using gene expression and TF–Gene association data. Bioinformatics Biol. Insights 1: 9–17.

    Article  Google Scholar 

  • Xie Z., Zhang Z.L., Zou X., Huang J., Ruas P., Thompson D. & Shen Q.J. 2005. Annotations and functional analyses of the rice WRKY gene super–family reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 137: 176–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z., Zhang Z.L., Zou X., Yang G., Komatsu S. & Shen Q.J. 2006. Interactions of two abscisic–acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J. 46: 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Xu S., Wang X. & Chen J. 2007. Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys–2/His–2–type transcription factor involved in drought and salt stress. Plant Cell Rep. 26: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Yan J.Y., Li C.X., Sun L., Ren J.Y., Li G.X., Ding Z.J. & Zheng S.J. 2016. A WRKY transcription factor regulates Fe translocation under Fe deficiency. Plant Physiol. 171: 2017–2027.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi K., Wu Z., Zhou J., Du L., Guo L., Wu Y. & Wu P. 2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol. 138: 2087–2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M., Liu X.C., Yuan L.Y., Wu K.Q., Duan J., Wang X.L. & Yang L.X. 2012. Transcriptional profiling in cadmium–treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol. Biochem. 50: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J., Verslues P.E., Zheng X.W., Lee B., Zhan X.Q., Manabe Y., Sokolchik I., Zhu Y., Dong C.H., Zhu J.K., Hasegawa P.M. & Bressan R.A. 2005. HOS10 encodes an R2R3–type MYB transcription factor essential for cold acclimation in plants. Proc. Natl. Acad. Sci. USA 102: 9966–9971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchao Liang.

Supplementary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Song, A., Li, Z. et al. Transcriptome analysis in leaves of rice (Oryza sativa) under high manganese stress. Biologia 72, 388–397 (2017). https://doi.org/10.1515/biolog-2017-0048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0048

Key words

Navigation