Skip to main content

Advertisement

Log in

Low density lipoprotein increases amyloid precursor protein processing to amyloidogenic pathway in differentiated SH-SY5Y cells

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Hypercholesterolemia has been considered as a risk factor for Alzheimer’s disease (AD). In addition to low density lipoprotein (LDL), oxidized LDL plays some roles in AD pathology. Neurodegenerative effect of oxidized LDL was supported by the increased oxidative stress in neurons. To further investigate the role of oxidized LDL, the present study aimed to test its effect on amyloid precursor protein (APP) processing. The release of soluble APP (sAPP) was evaluated in differentiated SH-SY5Y neuroblastoma cells exposed to native (non-oxidized) or oxidized human LDL including mildly and fully oxidized LDL (mox- and fox-LDL). Non-amyloidogenic and amyloidogenic pathways were investigated using specific antibody against sAPPα and sAPPβ. The results demonstrate that oxidized LDL induced neuronal death in dose-dependent patterns. Mox-LDL mediated caspase-3 dependent apoptosis, whereas fox-LDL notably damaged cell membrane. At subtoxic concentration, only native but not oxidized LDL induced the release of sAPP dominantly in amyloidogenic pathway with no change in β-secretase activity. These results suggest that LDL and oxidized LDL play critical roles in AD pathogenesis via different pathways. Elevated serum LDL level together with high oxidative stress may aggravate the progression of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ADAM:

A disintegrin and metalloproteinases

APP:

amyloid precursor protein

Aβ:

amyloid beta

BACE-1:

β-site APP cleaving enzyme 1

BBB:

blood-brain barrier

EDTA:

ethylenediaminetetraacetic acid

FBS:

foetal bovine serum

fox-LDL:

fully oxidized-low density lipoprotein

mox-LDL:

mildly oxidized-low density lipoprotein

sAPPα:

soluble amyloid precursor protein alpha

sAPPβ:

soluble amyloid precursor protein beta

References

  • Bereczki E., Bernat G., Csont T., Ferdinandy P., Scheich H. & Santha M. 2008. Overexpression of human apolipoprotein B-100 induces severe neurodegeneration in transgenic mice. J. Proteome Res. 7: 2246–2252.

    Article  CAS  Google Scholar 

  • Bjelik A., Bereczki E., Gonda S., Juhasz A., Rimanoczy A., Zana M., Csont T., Pakaski M., Boda K., Ferdinandy P., Dux L., Janka Z., Santha M. & Kalman J. 2006. Human apoB overexpression and a high-cholesterol diet differently modify the brain APP metabolism in the transgenic mouse model of atherosclerosis. Neurochem. Int. 49: 393–400.

    Article  CAS  Google Scholar 

  • Chasseigneaux S. & Allinquant B. 2012. Functions of Aβ, sAPPα and sAPPβ: similarities and differences. J. Neurochem. 120 (Suppl. 1): 99–108.

    Article  CAS  Google Scholar 

  • Chen X., Hui L. & Geiger J.D. 2014. Role of LDL cholesterol and endolysosomes in amyloidogenesis and Alzheimer’s disease. J. Neurol. Neurophysiol. 5: 236.

    Article  Google Scholar 

  • Chen X., Wagener J.F., Morgan D.H., Hui L., Ghribi O. & Geiger J.D. 2010. Endolysosome mechanisms associated with Alzheimer’s disease-like pathology in rabbits ingesting cholesterol-enriched diet. J. Alzheimers Dis. 22: 1289–1303.

    Article  CAS  Google Scholar 

  • Dias I.H., Mistry J., Fell S., Reis A., Spickett C.M., Polidori M.C., Lip G.Y. & Griffiths H.R. 2014. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation. Free Radic. Biol. Med. 75: 48–59.

    Article  CAS  Google Scholar 

  • Gamba P., Testa G., Gargiulo S., Staurenghi E., Poli G. & Leonarduzzi G. 2015. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front. Aging Neurosci. 7: 119.

    Article  Google Scholar 

  • Ghribi O., Larsen B., Schrag M. & Herman M.M. 2006. High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp. Neurol. 200: 460–467.

    Article  CAS  Google Scholar 

  • Hui L., Chen X. & Geiger J.D. 2012. Endolysosome involvement in LDL cholesterol-induced Alzheimer’s disease-like pathology in primary cultured neurons. Life Sci. 91: 1159–1168.

    Article  CAS  Google Scholar 

  • Imtiaz B., Tolppanen A.M., Kivipelto M. & Soininen H. 2014. Future directions in Alzheimer’s disease from risk factors to prevention. Biochem. Pharmacol. 88: 661–670.

    Article  CAS  Google Scholar 

  • Kankaanpaa J., Turunen S.P., Moilanen V., Horkko S. & Remes A.M. 2009. Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimer’s disease. Neurobiol. Dis. 33: 467–472.

    Article  CAS  Google Scholar 

  • Keller J.N., Hanni K.B. & Markesbery W.R. 1999. Oxidized lowdensity lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J. Neurochem. 72: 2601–2609.

    Article  CAS  Google Scholar 

  • Koyama A., Stone K. & Yaffe K. 2013. Serum oxidized lowdensity lipoprotein level and risk of cognitive impairment in older women. Neurobiol. Aging 34: 634–635.e2.

    Article  CAS  Google Scholar 

  • Lichtenthaler S.F. 2011. α-Secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. J. Neurochem. 116: 10–21.

    Article  CAS  Google Scholar 

  • Marques F., Sousa J.C., Sousa N. & Palha J.A. 2013. Bloodbrain-barriers in aging and in Alzheimer’s disease. Mol. Neurodegener. 8: 38.

    Article  Google Scholar 

  • Marwarha G. & Ghribi O. 2015. Does the oxysterol 27-hydroxycholesterol underlie Alzheimer’s disease–Parkinson’s disease overlap? Exp. Gerontol. 68: 13–18.

    Article  CAS  Google Scholar 

  • Matsuura E., Hughes G.R.V. & Khamashta M.A. 2008. Oxidation of LDL and its clinical implication. Autoimmun. Rev. 7: 558–566.

    Article  CAS  Google Scholar 

  • Maulik M., Westaway D., Jhamandas J.H. & Kar S. 2013. Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol. Neurobiol. 47: 37–63.

    Article  CAS  Google Scholar 

  • Multhaup G., Huber O., Buee L. & Galas M.C. 2015. Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Aβ42, and tau in nuclear roles. J. Biol. Chem. 290: 23515–23522.

    Article  CAS  Google Scholar 

  • Namba Y., Tsuchiya H. & Ikeda K. 1992. Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer’s disease. Neurosci. Lett. 134: 264–266.

    Article  CAS  Google Scholar 

  • Nowicki M., Muller K., Serke H., Kosacka J., Vilser C., Ricken A. & Spanel-Borowski K. 2010a. Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root ganglion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4. J. Neurosci. Res. 88: 403–412.

    Article  CAS  Google Scholar 

  • Nowicki M., Serke H., Kosacka J., Muller K. & Spanel-Borowski K. 2010b. Oxidized low-density lipoprotein (oxLDL) induces cell death in neuroblastoma and survival autophagy in schwannoma cells. Exp. Mol. Pathol. 89: 276–283.

    Article  CAS  Google Scholar 

  • Pfrieger F.W. & Ungerer N. 2011. Cholesterol metabolism in neurons and astrocytes. Prog. Lipid Res. 50: 357–371.

    Article  CAS  Google Scholar 

  • Poli G., Biasi F. & Leonarduzzi G. 2013. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 1: 125–130.

    Article  CAS  Google Scholar 

  • Reitz C. 2013. Dyslipidemia and the risk of Alzheimer’s disease. Curr. Atheroscler. Rep. 15: 307.

    Article  Google Scholar 

  • Xiong H., Callaghan D., Jones A., Walker D.G., Lue L.F., Beach T.G., Sue L.I., Woulfe J., Xu H., Stanimirovic D.B. & Zhang W. 2008. Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production. Neurobiol. Dis. 29: 422–437.

    Article  CAS  Google Scholar 

  • Yamchuen P., Aimjongjun S. & Limpeanchob N. 2014. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production. Neurochem. Int. 78: 1–6.

    Article  CAS  Google Scholar 

  • Zhao Z., Zhou H., Peng Y., Qiu C.H., Sun Q.Y., Wang F. & Xie H.N. 2014. Expression and significance of plasma 3-NT and ox-LDL in patients with Alzheimer’s disease. Genet. Mol. Res. 13: 8428–8435.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanteetip Limpeanchob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamchuen, P., Jeenapongsa, R., Nudmamud-Thanoi, S. et al. Low density lipoprotein increases amyloid precursor protein processing to amyloidogenic pathway in differentiated SH-SY5Y cells. Biologia 72, 238–244 (2017). https://doi.org/10.1515/biolog-2017-0024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0024

Key words

Navigation