Skip to main content
Log in

Detection of the antibacterial effect of Chaetomium cochliodes Palliser CCM F-232 based on agar plugs and unprocessed fungal substances from cultivation media

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

There is an increasing demand for novel antibiotics that are highly effective, but simultaneously reveal minimal side effects. Currently, major sources of antibiotics are found among bacterial genus Streptomyces and among fungal genera Penicillium and Aspergillus. Chaetomium represents the largest genus of the family Chaetomiaceae actually containing more than 100 described species. This rather complex genus has been reported as a rich source of secondary metabolite products with important biological activities, such as enzyme-inhibitory, antitumour, cytotoxic, antimalarial and also antibiotic effects. One of them, chaetomin, a part of Chaetomium cochliodes antimicrobial equipment was discovered already in the early period of antibiotics discovery, but later not investigated in sufficient detail. In this contribution we have studied Chaetomium cochliodes Palliser CCM F-232 for its possible antibacterial properties. For comparisons, a closely related fungus Chaetomium globosum was also employed. Antibacterial properties of Chaetomium sp. were tested on natural bacterial isolates of Staphylococcus aureus and Bacillus subtilis. We performed several antimicrobial tests with a correlating output. Antibacterial effects of these filamentous fungi were demonstrated either by the presence of susceptibility zones on solid agar media in the case of S. aureus or by growth inhibition in liquid broth in the case of Staphylococcus aureus and Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A600:

absorbance measured at a wavelength of 600 nm

CD agar or broth:

Czapek Dox agar or broth with 1% corn extract powder

IM:

intermediate

LB:

Luria-Bertani

MPG:

agar or broth, malt peptone glucose agar or broth

PME:

agar or broth, potato malt extract agar or broth with stripes of filter paper

RT:

room temperature 0.45 μmCco/Cgl MPG/PME/CD, filtrates through 0.45 μm membrane obtained from C. cochliodes or C. globosum cultivated in MPG, PME or CD broth

References

  • Bai H., Wu L., Yang T. & Li G. 2015. Isolation and identification of secondary metabolites from fungus Chaetomium gracile and their antimicrobial activities. Chin. J. Appl. Environ. Biol. 21: 274–278.

    CAS  Google Scholar 

  • Berdy J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65: 385–395.

    Article  CAS  Google Scholar 

  • Deng Y., Hua Z., Zhao Z. & Chen J. 2008. Effect of nitrogen sources on catalase production by Bacillus subtilis WSHDZ- 01. Chin. J. Appl. Environ. Biol. 14: 544–547.

    CAS  Google Scholar 

  • de Siqueira V.M., de Araujo R.J.M. & Souza-Motta C.M. 2011. Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 53: 89–95.

    Article  CAS  Google Scholar 

  • Frisvad J. C. 1986. Taxonomic approaches to mycotoxin identification, pp. 415–457. In: Cole R.J. (ed.) Modern Methods in the Analysis and Structural Elucidation of Mycotoxins. Academic Press, Inc., New York.

  • Garcia-Kirchner O., Segura-Granados M., Robledo-Bautista I. & Duran-Paramo E. 2000. Screening of potential antibiotic action of cellulolytic fungi. Appl. Biochem. Biotechnol. 84-86 769–778.

    Article  CAS  Google Scholar 

  • Geiger W.B., Conn J.E. & Waksman S.A. 1944. Chaetomin, a new antibiotic substance produced by Chaetomium cochliodes. II. Isolation and concentration. J. Bacteriol. 48: 531–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson M.I., Powell A.J., Tsang A., O’Toole N., Berka R.M., Barry K., Grigoriev I.V. & Natvig D.O. 2016. Genetics of mating in members of the Chaetomiaceae as revealed by experimental and genomic characterization of reproduction in Myceliophthora heterothallica. Fungal Genet. Biol. 86: 9–19.

    Article  CAS  Google Scholar 

  • Hwang E.I., Yun B.S., Kim Y.K., Kwon B.M., Kim H.G., Lee H.B. & Kim S U. 2000. Chaetoatrosin A, a novel chitin synthase II inhibitor produced by Chaetomium atrobrunneum F449. J. Antibiot. 53: 248–255.

    Article  CAS  Google Scholar 

  • Kobayashi M., Yoshimura S., Kinoshita T., Hashimoto M., Hashimoto S., Takase S., Fujie A., Hino M. & Hori Y. 2005. FR207944, an antifungal antibiotic from Chaetomium sp. no. 217 II. Isolation and structure elucidation. Biosci. Biotechnol. Biochem. 69: 1029–1032.

    Article  CAS  Google Scholar 

  • Kogel K.H., Franken P. & Hückelhoven R. 2006. Endophyte or parasite–what decides? Curr. Opin. Plant Biol. 9: 358–363.

    Article  Google Scholar 

  • Lam K.S. 2007. New aspects of natural products in drug discovery. Trends Microbiol. 15: 279–289.

    Article  CAS  Google Scholar 

  • Nielsen K.F., Gravesen S., Nielsen P.A., Andersen B., Thrane U. & Frisvad J.C. 1999. Production of mycotoxins on artificially and naturally infested building materials. Mycopathol. 145: 43–56.

    Article  CAS  Google Scholar 

  • Oh H., Swenson D.C. & Gloer J.B. 1998. Chaetochalasin A: a new bioactive metabolite from Chaetomium brasiliense. Tetrahedron Lett. 39: 7633–7636.

    Article  CAS  Google Scholar 

  • Pereira E., Santos A., Reis F., Tavares R.M., Baptista P., Lino-Neto T. & Almeida-Aguiar C. 2013. A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol. Res. 168: 1–5.

    Article  CAS  Google Scholar 

  • Pettit R.K. 2011. Small−molecule elicitation of microbial secondary metabolites. Microb. Biotechnol. 4: 471–478.

    Article  CAS  Google Scholar 

  • Pitt J.I. & Samson R.A. 1990. Approaches to Penicillium and Aspergillus systematics. Stud. Mycol. 32: 77–90.

    Google Scholar 

  • Piyasena K.G.N.P., Wickramarachchi W.A.R.T., Savitri Kumar N., Jayasinghe L. & Fujimoto Y. 2015. Two phytotoxic azaphilone derivatives from Chaetomium globosum, a fungal endophyte isolated from Amaranthus viridis leaves. Mycology 6: 158–160.

    Article  CAS  Google Scholar 

  • Provost N.B., Shi C., She Y.M., Cyr T.D. & Miller J.D. 2013. Characterization of an antigenic chitosanase from the cellulolytic fungus Chaetomium globosum. Med. Mycol. 51: 290–299.

    Article  CAS  Google Scholar 

  • Radic N. & Srukelj B. 2012. Endophytic fungi–the treasure chest of antibacterial substances. Phytomedicine 19: 1270–1284.

    Article  Google Scholar 

  • Smith K.M., Gautschi J.T. & Freitag M. 2014. Decoding the cryptic genomes of fungi: the promiseof novel antibiotics. Future Microbiol. 9: 265–268.

    Article  CAS  Google Scholar 

  • Song J.H. 2008. What’s new on the antimicrobial horizon? Int. J. Antimicrob. Agents 32: S207–S213.

    Article  CAS  Google Scholar 

  • Theuretzbacher U., Van Bambeke F., Cantón R., Giske C.G., Mouton J.W., Nation R.L., Paul M., Turnidge J.D. & Kahlmeter G. 2015. Reviving old antibiotics. J. Antimicrob. Chemother. 70: 2177–2181.

    Article  CAS  Google Scholar 

  • Zhang Q., Li H.Q., Zong S.C., Gao J.M. & Zhang A.L. 2012. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev. Med. Chem. 12: 127–148.

    Article  Google Scholar 

Download references

Acknowledgements

Our research was supported by the Slovak Research and Development Agency with grant APVV-14-0375 and by the Slovak Grant Agency VEGA with grant 2/0021/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Chovanová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chovanová, K., Zámocký, M. Detection of the antibacterial effect of Chaetomium cochliodes Palliser CCM F-232 based on agar plugs and unprocessed fungal substances from cultivation media. Biologia 71, 1204–1211 (2016). https://doi.org/10.1515/biolog-2016-0153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0153

Key words

Navigation