Skip to main content
Log in

Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In this study we focused on the comparison of the physiological responses to excess nitrogen (N) comparing Cladonia arbuscula subsp. mitis and Cladonia furcata. Both lichens were exposed to increased amounts of nitrogen (NH4NO3) for five weeks. Different concentrations of nitrogen were applied by spraying the lichen thalli during this period. After the treatment, the physiological parameters of the lichen, like chlorophyll a fluorescence, chlorophyll b integrity, content of soluble proteins, ergosterol, thiobarbituric acid reactive substances (TBARS) and content of secondary metabolites were measured. We found out that lichens responded differently to nitrogen excess concerning photobiont and mycobiont. The mycobiont of C. arbuscula subsp. mitis seems to be more sensitive to the nitrogen excess than C. furcata based on decreased ergosterol content. We concluded that the mycobiont is more sensitive to nitrogen excess than the photobiont in case of the tested lichen species in a middle term experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high performance liquid chromatography

TBARS:

thiobarbituric acid reactive species

TCA:

trichloracetic acid

PhQ:

phaeophytinization coefficient

References

  • Bačkor M., Kováčik J., Dzubaj A. & Bačkorová M. 2009. Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss. Plant Growth Regul. 58: 279–286.

    Article  Google Scholar 

  • Bradford M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing of protein utilizing the principle of protein-dye binding. Analyt. Bioch. 72: 248–254.

    Article  CAS  Google Scholar 

  • Dahlman L., Näsholm T. & Palmqwist K. 2001. Growth, nitrogen uptake, and resource allocation in the two tripartire lichens Nephroma arcticum and Peltigera aphthosa during nitrogen stress. New Phytol. 153: 307–315.

    Article  Google Scholar 

  • Dahlman L., Zetherström M., Sundberg B., Näsholm T. & Palmqvist K. 2002. Measuring ergosterol and chitin in lichens, pp. 348–362. In: Kranner I., Beckett R. & Varma A. (eds), Protocols in Lichenology: Culturing. Biochemistry. Ecophysiology and Use in Biomonitoring. Springer Verlag. ISBN: 3-540-41139-9.

    Chapter  Google Scholar 

  • Hauck M. 2010. Ammonium and nitrate tolerance in lichens. Environ. Poll. 158: 1127–1133.

    Article  CAS  Google Scholar 

  • Hauck M., Helms G. & Friedl T. 2007. Photobiont selectivity in the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Lichenologist 39: 195–204.

    Article  Google Scholar 

  • Johansson O., Nordin A., Olofsson J. & Palmqwist K. 2010. Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytol. 188: 1075–1084.

    Article  CAS  Google Scholar 

  • Loppi S. & Nascimbene J. 2010. Monitoring H2S air pollution caused by the industrial exploitation of geothermal energy: The pitfall of using lichens as bioindicators. Environ. Poll. 158: 2635–2639.

    Article  CAS  Google Scholar 

  • Makkonen S., Hurri R.S.K. & Hyvärinen M. 2007. Differential responses of Lichen symbionts to enhanced nitrogen and phosphorus availability: An experiment with Cladina stellaris. Ann. Bot. 99: 877–884.

    Article  CAS  Google Scholar 

  • Maslaňáková I., Biľová I., Goga M., Kuchár M. & Bačkor M. 2015. Differences between sensitivity of mycobiont and photobiont of Cladonia sp. lichens to different types of nitrogen exposure. Water Air Soil Poll. 226: 243.

    Article  Google Scholar 

  • Munzi S., Pirintsos S. A. & Loppi S. 2009a. Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicol. Environ. Safety 72: 281–285.

    Article  CAS  Google Scholar 

  • Munzi S., Pisani T. & Loppi S. 2009b. The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicol. Environ. Safety 72: 2009–2012.

    Article  CAS  Google Scholar 

  • Munzi S., Pisani T., Paoli L. & Loppi S. 2010. Time-and dosedependency of the effects of nitrogen pollution on lichens. Ecotoxicol. Environ. Safety 73: 1785–1788.

    Article  CAS  Google Scholar 

  • Nash III T.H. 2008. Lichen Biology. Second Edition. USA, NY: Cambridge University Press, ISBN 978-0-521-69216-8.

    Book  Google Scholar 

  • Nimis P.L. & Martellos S. 2008. ITALIC-The information System on Italian Lichens. Version 4. 0. University of Trieste, Dept. of Biology, IN4.0/1 https://doi.org/dbiodbs.univ.trieste.it/

    Google Scholar 

  • Nybakken L., Johansson O. & Palmqwist K. 2009. Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition. Global Change Biol. 15: 2247–2260.

    Article  Google Scholar 

  • Ochoa-Hueso R. & Manrique E. 2011. Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain. Environ. Poll. 159: 449–457.

    Article  CAS  Google Scholar 

  • Paoli L., Pirintsos S.A., Kotzabasis K., Pisani T., Navakoudis E. & Loppi S. 2010. Effects of ammonia from livestock farming on lichen photosynthesis. Environ. Poll. 158: 2258–2265.

    Article  CAS  Google Scholar 

  • Paoli L., Corsini A., Bigagli V., Vannini J., Bruscoli C. & Loppi S. 2012. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environ. Poll. 161: 70–75.

    Article  CAS  Google Scholar 

  • Pawlik-Skowro´nska B. & Bačkor M. 2011. Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environ. Exp. Bot. 72: 64–70.

    Article  Google Scholar 

  • Pirintsos S.A., Munzi S., Loppi S. & Kotzabasis K. 2009. Do polyamines alter the sensitivity of lichens to nitrogen stress? Ecotoxicol. Environ. Safety 72: 1331–1336.

    Article  CAS  Google Scholar 

  • Pisani T., Munzi S., Paoli L., Bačkor M., Kováčik J., Piovár J. & Loppi S. 2010. Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb. Chemosphere 82: 1030–1037.

    Article  Google Scholar 

  • Ronen R. & Galun M. 1984. Pigment extraction from lichens with dimethylsuloxide (DMSO) and estimation of chlorophyll degradation. Environ. Exp. Bot. 24: 239–245.

    Article  CAS  Google Scholar 

  • Skaloud P. & Peksa O. 2010. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol. Phylog. Evol. 54: 36–46.

    Article  Google Scholar 

  • Thormann M.N. 2006. Lichens as indicators of forest health in Canada. Forestry Chronicle 82: 335–343.

    Article  Google Scholar 

  • Wellburn A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144: 307–313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bačkor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Králiková, I., Goga, M., Biľová, I. et al. Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess. Biologia 71, 632–638 (2016). https://doi.org/10.1515/biolog-2016-0078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0078

Key words

Navigation