Skip to main content

Advertisement

Log in

Use of N,N’-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Indoor air pollution occurs due to hazardous pollutants, such as tobacco smoke, pesticides and carbon oxides, sulphur oxides and nitrogen oxides arising from combustion of biomass fuels. Exposure to these pollutants results in respiratory conditions like asthma, chronic obstructive pulmonary disease, lung cancer, pneumonia and other lower respiratory infections. Several of these infections are a result of inflammation and oxidative stress. Here we demonstrate the ability of N, N’-diacetylchitobiose in preventing oxidative DNA damage in peripheral blood mononuclear cells exposed to biomass smoke extracts and cigarette smoke extract. The cytotoxic effect of these pollutants was determined by trypan blue exclusion assay in peripheral blood mononuclear cells, where cytotoxicity in decreasing order was cigarette > wood > sawdust > cowdung. Cytotoxicity could be due to single- and double-strand breaks in the DNA as a result of oxidative stress. Comet assay measures the extent of DNA damage in the cells exposed to toxic agents. When mononuclear cells were treated with N, N’-diacetylchitobiose and later exposed to smoke extracts, the extent of DNA damage decreased by 44.5% and 57.5% as compared to untreated cells. The protection offered by N, N’-diacetylchitobiose towards oxidative DNA damage was at par with quercetin, a popular herbal medicine. Glutathione-S-transferase activity was determined in mononuclear cells exposed to smoke extracts, where oxidative stress in cells exposed to cigarette smoke extract was maximum. The present study demonstrates for the first time the ability of N, N’-diacetylchitobiose to alleviate the harmful effects of indoor air pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSEs:

biomass smoke extracts

COPD:

chronic obstructive pulmonary disease

COS:

N-acetylated chitooligosaccharides

CSE:

cigarette smoke extract

DMSO:

dimethyl sulfoxide

(GlcNAc)2:

N, N’-diacetylchitobiose

GST:

glutathione-S-transferase

IAP:

indoor air pollution

LPG:

liquefied petroleum gas

OS:

oxidative stress

PBMCs:

peripheral blood mononuclear cells

PBS:

phosphate buffered saline

ppm:

parts per million

ROS:

reactive oxygen species

SCGE:

single cell gel electrophoresis

WHO:

World Health Organization

References

  • Azam M.S., Kim E.J., Yang H.S. & Kim J.K. 2014. High antioxidant and DNA protection activities of N-acetylglucosamine (GlcNAc) and chitobiose produced by exolytic chitinase from Bacillus cereus EW5. Springerplus 3: 354.

    Article  Google Scholar 

  • Balakrishnan K., Sambandam S., Ramaswamy P., Mehta S. & Smith K.R. 2004. Exposure assessment for respirable particulates associated with household fuel use in rural districts of Andhra Pradesh, India. J. Expo. Anal. Environ. Epidemiol. 14: S14–S25.

    Article  CAS  Google Scholar 

  • Basak S.S., Silig Y. & Dogan O.T. 2010. Effects of the exposed to biomass and cigarette smoke on antioxidant defense system, GST activity and GSH levels in rat liver. The 3rd International Congress on Cell Membranes and Oxidative Stress: Focus on Calcium Signaling and TRP Channels, 22–27 June 2010, Isparta, Turkey.

    Google Scholar 

  • Bazzini C., Rossettia V., Antonio D., Civello D.A., Sassone F., Vezzoli V., Persani L., Tiberio L., Lanata L., Bagnasco M., Paulmichl M. & Meyer G. 2013. Short- and long- term effects of cigarette smoke exposure on glutathione homeostasis in human bronchial epithelial cells. Cell. Physiol. Biochem. 32: 129–145

    Article  CAS  Google Scholar 

  • Bolling A.K., Totlandsdal A.I., Sallsten G., Braun A., Westerholm R., Bergvall C., Boman J., Dahlman H.J., Sehlstedt M., Cassee F., Sandstrom T., Schwarze P.E. & Herseth J.I. 2012. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part. Fibre Toxicol. 9: 45.

    Article  Google Scholar 

  • Boot R.G., Blommaart E.F., Swart E., van der Ghauharali V.K., Bijl N., Moe C., Place A. & Aerts J.M.F.G. 2001. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 276: 6770–6778

    Article  CAS  Google Scholar 

  • Bruce N., Neufeld L., Erick B.O. & West C. 1998. Indoor biofuel air pollution and respiratory health: the role of confounding factors among women in highland Guatemala. Int. J. Epidemiol. 27: 454–458

    Article  CAS  Google Scholar 

  • Campbell M.A., Golub M.S., Iyer P., Kaufman F.L., Li L.H., Messan M.F., Morgan J.E. & Donald J.M. 2009. Reduced water intake: implications for rodent developmental and reproductive toxicity studies. Birth Defects Res. B Dev. Reprod. Toxicol. 86:157–157.

    Article  CAS  Google Scholar 

  • Castillo S.S., Levy M., Thaikoottathil J.V. & Goldkorn T. 2007. Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells. Exp. Cell Res. 313: 2680–2686

    Article  CAS  Google Scholar 

  • Ceylan E., Kocyigit A., Gencer M., Aksoy N. & Selek S. 2006. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respir. Med. 100: 1270–1276

    Article  Google Scholar 

  • Chen A.S., Taguchi T., Sakai K., Kikuchi K., Wang M.W. & Miwa I. 2003. Antioxidant activities of chitobiose and chitotriose. Biol. Pharm. Bull. 26: 1326–1330

    Article  CAS  Google Scholar 

  • Downs C.A., Montgomery D.W. & Merkle C.J. 2011. Age-related differences in cigarette smoke extract-induced H2O2 production by lung endothelial cells. Microvasc. Res. 82: 311–317

    Article  CAS  Google Scholar 

  • Forchhammer L., Moller P., Riddervold I.S., Bonlokke J., Massling A., Sigsgaard T. & Loft S. 2012. Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function. Part. Fibre Toxicol. 9: 7.

    Article  CAS  Google Scholar 

  • Fullerton D.G., Bruce N. & Gordon S.B. 2008. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans. R. Soc. Trop. Med. Hyg. 102: 843–851

    Article  Google Scholar 

  • Gyori B.M., Venkatachalam G., Thiagarajan P.S., Hsu D. & Clement M.V. 2014. OpenComet: an automated tool for comet assay image analysis. Redox Biol. 2: 457–465

    Article  CAS  Google Scholar 

  • Holz O., Jorres R., Kastner A. & Magnussen H. 1995. Differences in basal and induced DNA single-strand breaks between human peripheral monocytes and lymphocytes. Mutat. Res. 332: 55–62

    Article  CAS  Google Scholar 

  • Hopkins J.M. & Evans H.J. 1980. Cigarette smoke-induced DNA damage and lung cancer risks. Nature 283: 388–390

    Article  CAS  Google Scholar 

  • Létuvé S., Kozhich A., Humbles A., Brewah Y., Dombret M.C. Grandsaigne M. & Pretolani M. 2010. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation. Am. J. Pathol. 176: 638–649

    Article  Google Scholar 

  • Liang T.W., Chen Y.J., Yen Y.H. & Wang S.L. 2007. The an-titumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem. 42: 527–534

    Article  CAS  Google Scholar 

  • Mates J.M., Segura J.A., Alonso F.J. & Marquez J. 2012. Oxidative stress in apoptosis and cancer: an update. Arch. Toxicol. 86: 1649–1665

    Article  CAS  Google Scholar 

  • Musonda C.A. & Chipman J.K. 1998. Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-κB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 19: 1583–1589

    Article  CAS  Google Scholar 

  • Nawani N.N., Prakash D. & Kapadnis B.P. 2010. Extraction, purification and characterization of an antioxidant from marine waste using protease and chitinase cocktail. World J. Microbiol. Biotechnol. 26: 1509–1517

    Article  CAS  Google Scholar 

  • Ngo D.N., Kim M.M., Qian Z.J., Jung W.K., Lee S.H. & Kim S.K. 2010. Free radical scavenging activities of low molecular weight chitin oligosaccharides lead to antioxidant effect in live cells. J. Food Biochem. 34: 161–177

    Article  Google Scholar 

  • Ozturk S., Vatansever S., Cefle K., Palanduz S., Guler K., Erten N., Erk O., Karan M.A. & Tascioglu C. 2002. Acute wood or coal exposure with carbon monoxide intoxication induces sister chromatid exchange. J. Toxicol. Clin. Toxicol. 40: 115–120

    Article  CAS  Google Scholar 

  • Prakash M., Bodas M., Prakash D., Nawani N., Khetmalas M., Mandal A. & Eriksson C. 2013. Diverse pathological implications of YKL-40: answers may lie in ‘outside-in’ signaling. Cell. Signal. 25:1567–1573.

    Article  CAS  Google Scholar 

  • Rekhadevi P.V., Mahboob M., Rahman M.F. & Grover P. 2009. Genetic damage in wood dust-exposed workers. Mutagenesis 24: 59–65

    Article  CAS  Google Scholar 

  • Salgaonkar N., Prakash D., Nawani N.N. & Kapadnis B. P. 2015. Comparative studies on ability of N-acetylated chitooligosaccharides to scavenge reactive oxygen species and protect DNA from oxidative damage. Indian J. Biotechnol. 14: 186–192

    CAS  Google Scholar 

  • Singh N.P., McCoy M.T., Tice R.R. & Schneider E.L. 1988. A simple technique for quantification of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191

    Article  CAS  Google Scholar 

  • Slezak M., Skalniak A., Groszek B., Piatkowski J. & Pach D. 2014. The effect of acute carbon monoxide poisoning on micronuclei frequency and proliferation in human peripheral blood lymphocytes (case-control study). Przegl. Lek. 71: 463–468

    PubMed  Google Scholar 

  • Smith K.R. 1993. Fuel combustion, air-pollution exposure and health: the situation in developing countries. Annu. Rev. Energy Environ. 18: 529–566

    Article  Google Scholar 

  • Smith K.R. 2003. Indoor air pollution implicated in alarming health problems. In: Indoor Air Pollution — Energy and Health for Poor. News Letter 1.

    Google Scholar 

  • Smith K.R. & Liu Y. 1994. Indoor air pollution in developing countries, pp.151–184. In: Samet J.M. (ed.), Epidemiology of Lung Cancer. Lung Biology in Health and Disease, Marcel Dekker, New York.

    Google Scholar 

  • Smith K.R., Mehta S. & Maeusezahl-Feuz M. 2004. Indoor air pollution from household use of solid fuels: comparative quantification of health risks. In: Ezzati M., Rodgers A.D., Lopez A.D. & Murray C.J.L. (eds), Comparative Quantification of Health Risks: Global and Regional Burden of Disease due to Selected Major Risk Factors, World Health Organization, Geneva, Switzerland.

  • Smith K.R., Samet J.M., Romieu I. & Bruce N. 2000. Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax 55: 518–532

    Article  CAS  Google Scholar 

  • Wang S.L., Hsu W.H. & Liang T.W. 2010. Conversion of squid pen by Pseudomonas aeruginosa K-187 fermentation for the production of N-acetyl chitooligosaccharides and biofertilizers. Carbohydr. Res. 345: 880–885

    Article  CAS  Google Scholar 

  • Wang S.L., Yang C.W., Liang T.W. Peng J.H. & Wang C.L. 2009. Degradation of chitin and production of bioactive materials by bioconversion of squid pens. Carbohydr. Polym. 78: 205–212

    Article  CAS  Google Scholar 

  • WHO. 2000. Air quality guidelines for Europe. WHO regional publications, 91. Copenhagen, Denmark.

    Google Scholar 

  • WHO. 2009. Global health risks: mortality and burden of disease attributable to selected major risks. WHO publications, Geneva, Switzerland.

    Google Scholar 

  • WHO. 2011. Indoor air pollution and health: fact sheet No. 292. WHO publications, Geneva, Switzerland.

    Google Scholar 

  • WHO. 2014. WHO indoor air quality guidelines: household fuel combustion. WHO publications, Geneva, Switzerland.

    Google Scholar 

Download references

Acknowledgements

This study was supported by Department of Science and Technology (DST), New Delhi, Government of India, through the research grant (Grant No. SR/S0/HS/0022/2011). NS is thankful to DST for Junior Research Fellowship. This study was partly funded by Swedish International Development Cooperation Agency (SIDA), Sweden, under the grant number AKT-2012-005. The authors are also thankful to Dr. D.Y. Patil Vidyapeeth, Pune, for the necessary infrastructure and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelu N. Nawani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgaonkar, N.A., Thakare, P.M., Junnarkar, M.V. et al. Use of N,N’-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage. Biologia 71, 508–515 (2016). https://doi.org/10.1515/biolog-2016-0075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0075

Key words

Navigation