Skip to main content
Log in

Effects of ammonium ion on cell growth and biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Callus cultures of Arnebia euchroma (Royle) Johnst can produce considerable amounts of shikonin derivatives, which are shown to possess a wide spectrum of pharmaceutical properties, such as antimicrobial, anticancer, antioxidative, immune regulative and anti-inflammatory. To explore the possible regulation mechanism of shikonin derivatives biosynthesis, the effects of ammonium ion (NH+4) on cell growth and formation of shikonin derivatives in callus cultures of A. euchroma were investigated in this paper. The main results include: When A. euchroma callus were cultured in medium with different concentrations of NH+4 (0 mM, 7.02 mM, 14.04 mM), the fresh weight of the cell cultured in 7.02 mM NH+4 was higher than those in 0 mM and 14.04 mM NH+4, indicating that NH+4 is necessary for the cell growth of A. euchroma callus cultures, while excessive NH4+ concentration (14.04 mM) could rather inhibit the cell growth of A. euchroma. The quantitative analysis of the seven main naphthoquinone compounds showed that the contents of most of the shikonin derivatives (including the bioactive components acetylshikonin and β,β-dimethyl-acrylshikonin) of the Red Strain cultured in 0 mM NH4+ condition were higher than those in other NH+4 conditions (7.02 mM, 14.04 mM) at most of the sample points, suggesting that NH+4 essentially plays an unfavorable role in the biosynthesis of shikonin derivatives. The analysis of quantitative real-time RTPCR showed that a higher NH+4 concentration inhibited the expression of key enzyme genes (such as AePGT) of shikonin derivatives biosynthesis, while -NH4+ condition was conducive to the expression of such genes. In sum, our results show that NH4+ is necessary for the cell growth of A. euchroma, while unnecessary, or even adversary to the biosynthesis of shikonin derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AeC4H :

Arnebia euchroma cinnamic acid 4-hydroxylase gene

Ae4CL :

Arnebia euchroma 4-coumarate: CoA ligase gene

GPP:

geranyl diphosphate

AeGPPS :

Arnebia euchroma geranyl pyrophosphate synthase gene

4-HB:

4-hydroxybenzoate

AeHMGR :

Arnebia euchroma 3-hydroxy-3-methylglutarylcoenzyme A reductase gene

AePGT :

Arnebia euchroma p-hydroxybenzoate 3-geranyltransferase gene

FW:

fresh weight

HPLC:

high-performance liquid chromatography

KT:

6-furfurylaminopurine

IAA:

indoleacetic acid

References

  • Andújar I., Ríos J.L., Giner R.M. & Recio M.C. 2013. Pharmacological properties of shikonin - a review of literature since 2002. Planta Med. 79: 1685–1697.

    Article  Google Scholar 

  • Chen X., Yang L., Oppenheim J.J. & Howard M.Z. 2002. Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 16: 199–209.

    Article  CAS  Google Scholar 

  • Fujita Y., Hara Y., Ogino T. & Suga C. 1981. Production of shikonin derivatives by cell suspension cultures of Lithosperm,um, rythrorhizon. I. Effects of nitrogen sources on the production of shikonin derivatives. Plant Cell Rep. 1:59-60.

  • Ge R, Wang X.D. & Wang Y.C. 2003. Advances in studies on medicinal Radix Arnebiae Seu Lithospermi. Chin. Tradit. Herb. Drugs 34: 7–10.

    Google Scholar 

  • Hao H., Lei C.Y., Dong Q.L., Shen Y.L., Chi J.T., Ye H.C. & Wang H. 2014. Effects of exogenous methyl jasmonate on the biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma. Appl. Biochem. Biotechnol. 173: 2198–2210.

    Article  CAS  Google Scholar 

  • Heide L. & Berger U. 1989. Partial puri fication and properties of geranyl pyrophosphate synthase from Lithospermum erythrorhizon cell cultures. Arch. Biochem. Biophys. 273: 331–338.

    Article  CAS  Google Scholar 

  • Kim J.Y., Jeong H.J., Park J.Y., Kim Y.M., Park S.J., Cho J.K., Park K.H., Ryu Y.B. & Lee W.S. 2012. Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases. Bioorg. Med. Chem. 20: 1740–1748.

    Article  CAS  Google Scholar 

  • Lange B.M., Severin K., Bechthold A. & Heide L. 1998. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl- coenzyme A reductase for shikonin biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Planta 204: 234–241.

    Article  CAS  Google Scholar 

  • Li G.R., Wu Z.R., Ye H.C., Lu R.S. & Xiang G.Q. 1988. Induction and formation of the naphthoqunone pigments in vitro in Arnebia euchroma. Chin. Bull. Bot. 5: 84–86.

    Google Scholar 

  • Linsmaier E.M. & Skoog F. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18: 100–127.

    Article  CAS  Google Scholar 

  • Matsuno M., Nagatsu A., Ogihara Y., Ellis B.E. & Mizukami H. 2002. CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4’-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett. 514: 219–224.

    Article  CAS  Google Scholar 

  • Rohr F., Ulrichs C., Schreiner M., Zrenner R. & Mewis I. 2012. Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist Caterpillar. Plant Physiol. Biochem. 55: 52–59.

    Article  CAS  Google Scholar 

  • Tabata M., Mizukami H., Hiraoka N. & Konoshim M. 1974. Pigment formation in callus cultures of Lithospermum erythrorhizon. Phytochemistry 13: 927–932

    Article  CAS  Google Scholar 

  • Tabata M. 1996. The mechanism of shikonin biosynthesis in Lithospermum cell cultures. Plant Tiss. Cult. Lett., 13: 117–126.

    Article  CAS  Google Scholar 

  • White P.R. 1954. The cultivation of animal and plant cells. The Ronald Press Co., New York.

    Google Scholar 

  • Wu Y.Y., Zhu L., Ma X.Y., Shao Z.J., Chen J., Chen X.J., Wan L.H. & Zhou L.M. 2011. The antiproliferation effect of Aikete injection on hepatocellular carcinoma in vitro and in vivo. Pharm. Biol. 49: 531–538.

    Article  CAS  Google Scholar 

  • Yamamura Y., Ogihara Y. & Mizukami H. 2001. Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep. 20: 655–662.

    Article  CAS  Google Scholar 

  • Yamamura Y., Sahin F.P., Nagatsu A. & Mizukami H. 2003. Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin-producing callus strain of Lithospermum erythrorhizon. Plant Cell Physiol. 44: 437–446.

    Article  CAS  Google Scholar 

  • Yazaki K., Fukui H., Kikuma M. & Tabata M. 1987. Regulation of shikonin production by glutamine in Lithospermum erythrorhizon cell cultures. Plant Cell Rep. 6: 131–134.

    CAS  PubMed  Google Scholar 

  • Yazaki K., Ogawa A. & Tabata M. 1995. Isolation and characterization of two cDNAs encoding 4-coumarate:CoA ligase in Lithospermum cell cultures. Plant Cell Physiol. 36: 1319–1329.

    CAS  PubMed  Google Scholar 

  • Yazaki K., Kataoka M., Honda G., Severin K. & Heide L. 1997. cDNA cloning and gene expression of phenylalanine ammonia-lyase in Lithospermum erythrorhizon. Biosci. Biotechnol. Biochem. 61: 1995–2003.

    Article  CAS  Google Scholar 

  • Yazaki K., Matsuoka H., Ujihara T. & Sáto F. 1999. Shikonin biosynthesis in Lithospermum erythrorhizon: light-induced negative regulation of secondary metabolism. Plant Biotechnol. 16: 335–342.

    Article  CAS  Google Scholar 

  • Yazaki K., Matsuoka H., Shimomura K., Bechthold A. & Sato F. 2001. A novel dark-inducible protein, LeDI-2, and its involvement in root-speci fic secondary metabolism in Lithospermum erythrorhizon. Plant Physiol. 125: 1831–1841.

    Article  CAS  Google Scholar 

  • Yazaki K., Kunihisa M., Fujisaki T. & Sato F. 2002. Geranyl diphosphate: 4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a ket enzyme in shikonin biosynthesis. J. Biol. Chem. 277: 6240–6246.

    Article  CAS  Google Scholar 

  • Zhang W.J., Zou A.L., Miao J., Yin Y.L., Tian R.N., Pang Y.J., Yang R.W., Qi J.L. & Yang Y.H. 2011. LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down- regulated by light signals in Lithospermum erythrorhizon. Plant Biology (Stuttg) 13: 343–348.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Pengyue Li (Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences) for his help in HPLC and LC-MS analyses. This work was supported by the National Natural Science Foundation of China (grant No. 61173098, No. 61379081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Pu, G.B., Lei, C.Y. et al. Effects of ammonium ion on cell growth and biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma. Biologia 70, 1053–1062 (2015). https://doi.org/10.1515/biolog-2015-0122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0122

Key words

Navigation