Skip to main content
Log in

Microarray analysis of different expression profiles between wild-type and transgenic rice seedlings overexpression OsDREB1BI gene

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Overexpressed genes encoding the transcription factors of DREB/CBF can improve abiotic tolerance in transgenic plants. However, the mechanism of plant abiotic tolerance at the molecular level has not been clearly elucidated. In this study, the OsDREB1BI gene was introduced to Zhonghua 11, an Oryza sativa L. japonica variety. The rice plant hosting the OsDREB1BI gene showed an improved tolerance to low temperatures compared with wild-type plants. A total of 404 differentially expressed genes were detected in transgenic and wild-type rice plants by using the Affymetrix microarray system. Results showed that 180 or 224 genes were induced or suppressed, respectively. The functional classification of these differentially expressed genes indicated that such genes are involved in various metabolic pathways, including coding for stress-response-related proteins. The number of up-regulated genes (56) was greater than that of the down-regulated genes (24). Proteins with an unknown function constituted the highest proportion. The gene encoding an AP2 domaincontaining protein RAP2.8 was down-regulated in the transgenic rice plant. Many “hot” sites, where some up-regulated or down-regulated genes were clustered, were found in rice chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARF:

auxin response factor

AP2:

APETALA2 factor bHLH

CaMV:

cauliflower mosaic virus

CBF:

C-repeat binding factor

Dof:

DNA-binding one zinc finger

DRE:

dehydration responsive element

DREB:

dehydration responsive element binding factor

ERF:

ethylene responsive element binding factor

HSF:

heat shock transcription factor

NAC:

NAM, ATAF1, ATAF2 and CUC2 factor

TF:

transcription factor

RAV:

related to ABI3/VP factor

References

  • Agarwal P.K., Agarwal P., Reddy M. & Sopory S.K. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25 1263–1274.

    Article  CAS  PubMed  Google Scholar 

  • Babu M.M., Luscombe N.M., Aravind L., Gerstein M. & Teichmann S.A. 2004. Structure and evolution of transcriptional regulatory networks. Current Opin. Structur. Biol. 14 283–291.

    Article  CAS  Google Scholar 

  • Benedict C., Skinner J.S., Meng R., Chang Y., Bhalerao R., Huner N., Finn C.E., Chen T.H. & Hurry V. 2006. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ. 29 1259–1272.

    Article  CAS  PubMed  Google Scholar 

  • Chen L., Song Y., Li S., Zhang L., Zou C. & Yu D. 2012. The role of WRKY transcription factors in plant abiotic stresses. BBA-Gene Regulatory Mechanisms 1819 120–128.

    CAS  PubMed  Google Scholar 

  • Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C. & Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15 573–581.

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K. & Yamaguchi-Shinozaki K. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J. 33 751–763.

    Article  CAS  PubMed  Google Scholar 

  • Gilmour S.J., Zarka D.G., Stockinger E.J., Salazar M.P., Houghton J.M. & Thomashow M.F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Gu X., Chen Y., Gao Z., Qiao Y. & Wang X. 2015. Transcription factors and anthocyanin genes related to low–temperature tolerance in rd29A: RdreB1BI transgenic strawberry. Plant Physiol. Biochem. 89 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh T.H., Lee J.T., Charng Y.Y. & Chan M.T. 2002a. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130 618–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y.Y., Wang Y.C. & Chan M.T. 2002b. Heterology expression of the Arabidopsis C–Repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129 1086–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L. & Liu S. 2011. Genome–wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Gen. Mol. Biol. 34 624–634.

    Article  CAS  Google Scholar 

  • Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K. & Yamaguchi–Shinozaki K. 2006. Functional analysis of rice DREB1/CBF–type transcription factors involved in cold–responsive gene expression in transgenic rice. Plant Cell Physiol. 47 141–153.

    Article  CAS  PubMed  Google Scholar 

  • Jaglo–Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O. & Thomashow M.F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280 104–106.

    Article  PubMed  Google Scholar 

  • Jaglo K.R., Kleff S., Amundsen K.L., Zhang X., Haake V., Zhang J.Z., Deits T. & Thomashow M.F. 2001. Components of the Arabidopsis C–repeat/dehydration–responsive element binding factor cold–response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127 910–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M., Liu Q., Miura S., Yamaguchi–Shinozaki K. & Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress–inducible transcription factor. Nature Biotech. 17 287–291.

    Article  CAS  Google Scholar 

  • Kasuga M., Miura S., Shinozaki K. & Yamaguchi–Shinozaki K. 2004. A combination of the Arabidopsis DREB1A gene and stress–inducible. rd29A promoter improved drought–and low–temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45 346–350.

    Article  CAS  PubMed  Google Scholar 

  • Kidokoro S., Watanabe K., Ohori T., Moriwaki T., Maruyama K., Mizoi J., Myint Phyu Sin Htwe N., Fujita Y., Sekita S. & Shinozaki K. 2015. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stressresponsive gene expression. Plant J. 81 505–518.

    Article  CAS  PubMed  Google Scholar 

  • Latchman D.S. 1997. Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29 1305–1312.

    Article  CAS  PubMed  Google Scholar 

  • Lee T.I. & Young R.A. 2000. Transcription of eukaryotic protein–coding genes. Annu. Rev. Genet. 34 77–137.

    Article  CAS  PubMed  Google Scholar 

  • Li M.Y., Wang F., Jiang Q., Li R., Ma J. & Xiong A.S. 2013. Genome–wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and elucidates their potential function in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Mol. Biol. Rep. 31 1002–1011.

    Article  CAS  Google Scholar 

  • Li X., Duan X., Jiang H., Sun Y., Tang Y., Yuan Z., Guo J., Liang W., Chen L. & Yin J. 2006. Genome–wide analysis of basic/helix–loop–helix transcription factor family in rice an. Arabidopsis. Plant Physiol. 141 1167–1184.

    Article  CAS  Google Scholar 

  • Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. & Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought–and low–temperature–responsive gene expression, respectively, in Arabidopsis. Plant Cell 10 1391–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J., Wang F., Li M.Y., Jiang Q., Tan G.F. & Xiong A.S. 2014b. Genome wide analysis of the NAC transcription factor family in Chinese cabbage to elucidate responses to temperature stress. Scientia Horticult. 165 82–90.

    Article  CAS  Google Scholar 

  • Ma J., Xu Z.S., Wang F., Tan, G.F., Li M.Y. & Xiong A.S. 2014a. Genome–wide analysis of HSF family transcription factors and their responses to abiotic stresses in two Chinese cabbage varieties. Acta Physiol. Plant. 36 513–523.

    Article  CAS  Google Scholar 

  • Ma J., Li M.Y., Wang F., Tang J. & Xiong A.S. 2015. Genome–wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC genomics 16: 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoi J., Shinozaki K. & Yamaguchi–Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. BBA–Gene Regulatory Mechanisms 1819 86–96.

    CAS  PubMed  Google Scholar 

  • Nakano T., Suzuki K., Fujimura T. & Shinshi H. 2006. Genome–wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140 411–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K., Takasaki H., Mizoi J., Shinozaki K. & Yamaguchi–Shinozaki K. 2012. NAC transcription factors in plant abiotic stress responses. BBA–Gene Regulatory Mechanisms 1819 97–103.

    CAS  PubMed  Google Scholar 

  • Nishiyama R., Le D.T., Watanabe Y., Matsui A., Tanaka M., Seki M., Yamaguchi–Shinozaki K., Shinozaki K. & Tran L.S.P. 2012. Transcriptome analyses of a salt–tolerant cytokinin–deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PloS One 7: e32124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamuro J.K., Caster B., Villarroel R., Van Montagu M. & Jofuku K.D. 1997. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc.Natl. Acad. Sci. USA 94 7076–7081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Q.L., Liu J.G., Zhang Z., Peng R.H., Xiong A.S., Yao Q.H. & Chen J.M. 2007. Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza sativa L. Molecular Breeding 19 329–340.

    Article  CAS  Google Scholar 

  • Qiu D., Xiao J., Xie W., Cheng H., Li X. & Wang S. 2009. Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol. 9: 74.

    Google Scholar 

  • Riańo–Pachón D.M., Ruzicic S., Dreyer I. & Mueller–Roeber B. 2007. PlnTFDB: an integrative plant transcription factor database. BMC Bioinform. 8: 42.

    Article  CAS  Google Scholar 

  • Riechmann J.L. & Meyerowitz E.M. 1998. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379 633–646.

    CAS  PubMed  Google Scholar 

  • Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K. & Yamaguchi–Shinozaki K. 2002. DNA–binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration–and cold–inducible gene expression. Bioch. Biophys. Res. Comm. 290 998–1009.

    Article  CAS  Google Scholar 

  • Scharf K.D., Berberich T., Ebersberger I. & Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. BBA–Gene Regulatory Mechanisms 1819 104–119.

    CAS  PubMed  Google Scholar 

  • Sharoni A.M., Nuruzzaman M., Satoh K., Shimizu T., Kondoh H., Sasaya T., Choi I.–R., Omura T. & Kikuchi S. 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 52 344–360.

    Article  CAS  PubMed  Google Scholar 

  • Stockinger E.J., Gilmour S.J. & Thomashow M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain–containing transcriptional activator that binds to the C–repeat/DRE, a cis–acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94 1035–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J., Wang F., Wang Z., Huang Z., Xiong A. & Hou X. 2013. Characterization and co–expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak–choi (Brassica campestris ssp. chinensis). BMC Plant Biol. 13: 188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y., Jiang C.–J., Li Y.Y., Wei C.L. & Deng W.W. 2012. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 31 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z., Tang J., Hu R., Wu P., Hou X.L., Song X.M. & Xiong A.S. 2015. Genome–wide analysis of the R2R3–MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. BMC Genomics 16: 17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing H., Pudake R., Guo G., Xing G., Hu Z., Zhang Y., Sun Q. & Ni Z. 2011. Genome–wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 12: 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong A.S., Jiang H.H., Zhuang J., Peng R.H., Jin X.F., Zhu B., Wang F., Zhang J. & Yao Q.H. 2013. Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis. Mol. Biotechnol. 53 198–206.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z.S., Chen M., Li L.C. & Ma Y.Z. 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement. J. Integr. Plant Biol. 53 570–585.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi–Shinozaki K. & Shinozaki K. 1994. A novel cis–acting element in an Arabidopsis gene is involved in responsiveness to drought, low–temperature, or high–salt stress. Plant Cell 6 251–264.

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K. & Shinozaki K. 2005. Organization of cis–acting regulatory elements in osmotic–and cold–stress–responsive promoters. Trends Plant Sci. 10 88–94.

    Article  CAS  PubMed  Google Scholar 

  • Yang X. & Tuskan G.A. 2006. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol. 142 820–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun K.-Y., Park M.R., Mohanty B., Herath V., Xu F., Mauleon R., Wijaya E., Bajic V.B., Bruskiewich R. & de Los Reyes B.G. 2010. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol. 10: 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, H., Jin, J., Tang, L., Zhao, Y., Gu, X., Gao, G. & Luo, J. 2011. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res. 39: D1114–1117.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J. & Thomashow, M.F. 2004. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 39 905–919.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang, J., Cai, B., Peng, R.-H., Zhu, B., Jin, X.-F., Xue, Y., Gao, F., Fu, X.-Y., Tian, Y.-S., Zhao, W., Xiong, A.S. & Yao, Q.H. 2008. Genome–wide analysis of the AP2/ERF gene family in Populus trichocarp. Biochem. Biophys. Res. Comm. 371 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J., Jiang H.H., Wang F., Peng R.-H., Yao Q.H. & Xiong A.S. 2013. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol. Biol. Rep. 31 1336–1345.

    Article  CAS  Google Scholar 

  • Zhuang J., Peng R.H., Cheng Z.M.M., Zhang J., Cai B., Zhang Z., Gao F., Zhu B., Fu X.Y., Jin X.F., Xiong A.S., & Yao Q.H. 2009. Genome–wide analysis of the putative AP2/ERF family genes in Vitis vinifera. Sci. Horticul. 123 73–81.

    Article  CAS  Google Scholar 

  • Zhuang J., Zhang J., Hou X.L., Wang F. & Xiong A.S. 2014. Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Crit. Rev. Plant Sci. 33 225–237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (31200520); New Century Excellent Talents in University (NCET-11-0670); Jiangsu Natural Science Foundation (BK2012774, BK20130027); Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Supplementary Information

11756_2015_7006760_MOESM1_ESM.pdf

Microarray analysis of different expression profiles between wild-type and transgenic rice seedlings overexpression OsDREB1BI gene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, J., Wang, F., Xu, ZS. et al. Microarray analysis of different expression profiles between wild-type and transgenic rice seedlings overexpression OsDREB1BI gene. Biologia 70, 760–770 (2015). https://doi.org/10.1515/biolog-2015-0092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0092

Key words

Navigation