Skip to main content
Log in

Antioxidant and free radical scavenging potential of crude sulphated polysaccharides from Turbinaria ornata

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The sulphated polysaccharides from brown algae have been attracting extensive interest due to their numerous biological activities. The present study was designed to evaluate the antioxidant activity and free-radical scavenging capacity of crude sulphated polysaccharides (CSP) from Turbinaria ornata, a marine brown algae. The CSP was extracted from T. ornata using hot water with the yield of 14.31% (w/w). The chemical composition analysis of CSP showed 71.07 ± 4.61 % of total sugar, 1.81 ± 0.035 % total protein, 27 ± 1.49 % sulphate, and 6.16 ± 0.36 % total phenol. The presence of sulphated polysaccharides in the CSP was confirmed by agarose gel electrophoresis. The in vitro antioxidant activity of CSP was evaluated using total antioxidant power assay and ferric reducing antioxidant power assay (FRAP). The results revealed that the total antioxidant capacity of CSP was 22.205 ± 0.875 (equivalent mg of ascorbic acid/g of CSP) and 0.556 ± 0.03 (mM of FeSO4/mg of CSP) FRAP value, respectively. The free-radical scavenging ability of CSP was demonstrated using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide radical. The capacity of the CSP to scavenge 50% of free radicals was found to be 88.71 ± 1.01, 440.07 ± 4.43 and 352 ± 4.58 µg/mL for ABTS, DPPH and superoxide radical, respectively. These results showed that the CSP from T. ornata possess antioxidant and free-radical scavenging capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

BHA:

butylated hydroxyanisole

BHT:

butylated hydroxytoluene

CSP:

crude sulphated polysaccharides

DPPH:

2,2-diphenyl-1-picrylhydrazyl

FRAP:

ferric reducing antioxidant power

NBT:

nitro blue tetrazolium

PG:

propyl gallate

PMS:

phenazine methosulphate

ROS:

reactive oxygen species

PMS:

phenazine methosulphate

ROS:

reactive oxygen species

TBHQ:

tert-butylhydroxytoluene

TPTZ:

2,4,6-tripyridyl-s-triazine

References

  • Barahona T., Chandia N.P., Encinas M.V., Matsuhiro B. & Zuniga E.A. 2011. Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocoll. 25: 529–535.

    CAS  Google Scholar 

  • Benzie I.E.F. & Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239: 70–76.

    CAS  PubMed  Google Scholar 

  • Blois M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199–1120.

    CAS  Google Scholar 

  • Bradford M. M. 1986. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 22: 248–254.

    Google Scholar 

  • Camara R.B., Costa L.S., Fidelis G.P., Nobre L.T., Dantas-Santos N., Cordiro S.L., Costa M.S., Alves L.G. & Rocha H.A. 2011. Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar. Drugs 24: 124–138.

    Google Scholar 

  • Chattopadhyay N., Ghosh T., Sinha S., Chattopadhyay K., Kar-makar P. & Ray B. 2010. Polysaccharides from Turbinaria conoides: structural features and antioxidant capacity. Food Chem. 118: 823–829.

    CAS  Google Scholar 

  • Cornish M.L. & Garbary D.J. 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25: 155–171.

    CAS  Google Scholar 

  • Costa L.S., Fidelis G.P., Silva Telles C.B., Dantas-Santos N., Gomes Camara R.B., Cordeiro S.L., Pereira Costa M.S., Almeida-Lima J., Melo-Silveira, R.F., Oliveira, R.M., Lopes Albuquerque, I.R., Viana Andrade, G.P. & Oliveira Rocha H.A. 2011. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar. Drugs 9: 952–966.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dische Z. & Shettles L.B. 1948. A specific color reaction of methyl pentoses and a spectrophotometric micro method for their determination. J. Biol. Chem. 175: 595–603.

    CAS  PubMed  Google Scholar 

  • Dodgson K.S. 1961. Determination of inorganic sulphate in studies on the enzymic and nonenzymic hydrolysis of carbohydrate and other sulphate esters. Biochem. J. 78: 312–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X.J., Zhang W.W., Li X.M. & Wang B.G. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem. 95: 37–43.

    CAS  Google Scholar 

  • Faulkner D.J. 2002. Marine natural products. Nat. Prod. Rep. 19: 1–48.

    CAS  PubMed  Google Scholar 

  • Fenoradosoa T.A., Delattre C., Laroche C., Wadouachi A., Dulong V., Picton L., Andriamadio P. & Michaud P. 2009. Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. Int. J. Biol. Macromol. 45: 140–145.

    CAS  PubMed  Google Scholar 

  • Francisco C.G., Freire R., Herrera A.J., Perez-Martín I. & Suarez E. 2002. Intramolecular 1,5- versus 1,6-hydrogen abstraction reaction promoted by alkoxyl radicals in carbohydrate models. Org. Lett. 11: 1959–1961.

    Google Scholar 

  • Grice H.C. 1986. Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127–1130.

    Google Scholar 

  • Honya M., Mori H., Anzai M., Araki Y. & Nisizawa K. 1999. Monthly changes in the content of fucans, their constituent sugars and sulphate in cultured Laminaria japonica. Hydrobiologia 398/399: 411–416.

    CAS  Google Scholar 

  • Horn S.J., Moen E. & Ostgard K. 1999. Direct determination alginate content in brown algae by near infra-red (NIR) spec-troscopy. J. Appl. Phycol. 11: 9–13.

    CAS  Google Scholar 

  • Hu T., Liu D., Chen Y., Wu J. & Wang S. 2010. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int. J. Biol. Macromol. 46: 193–198.

    CAS  PubMed  Google Scholar 

  • Hwang P.A., Wu C.H., Gau S.Y., Chien S.Y. & Hwang D.F. 2010. Antioxidant and immune-stimulating activities of hot-water extract from seaweed Sargassum hemiphyllum. J. Mar. Sci. Technol. 18: 41–46.

    Google Scholar 

  • Kang K.A., Lee K.H., Chae S., Zhang R., Jung M.S., Lee, Y., Kim S.Y., Kim H.S., Joo H.G., Park J.W., Ham Y.M., Lee N.H & Hyun J.W. 2005. Eckol isolated from Ecklonia cavaattenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS Lett. 579: 6295–6304.

    CAS  PubMed  Google Scholar 

  • Karnjanapratum S. & You S. 2011. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. Int. J. Biol. Macromol. 48: 311–318.

    CAS  PubMed  Google Scholar 

  • Kovatcheva E.G., Koleva I.I., Ilieva M., Pavlov A., Mincheva M. & Konushlieva M. 2001. Antioxidant activity of extracts from Lavandula vera MM cell culture. Food Chem. 7: 1069–1077.

    Google Scholar 

  • Leong L.P. & Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 76: 69–75.

    CAS  Google Scholar 

  • Liu X., Zhang Z.S.M., Meng X., Xia X., Yuan W., Xue F. & Liu C. 2012. Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicas. Carbohydr. Polym. 90: 664–670.

    Google Scholar 

  • Matthaus B. 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 50: 3444–3452.

    CAS  PubMed  Google Scholar 

  • Moen E., Larsen B., Ostgard K. & Jensen A. 1999. Alginate stability during high salt preservation of Ascophyllum nodosum. J. Appl. Phycol. 11: 21–25.

    CAS  Google Scholar 

  • Nandita S. & Rajini P.S. 2004. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85: 611–616.

    Google Scholar 

  • Nishimiki M., Rao N.A. & Yagi K. 1972. The occurrence of super-oxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46: 849–853.

    Google Scholar 

  • Park Y.H., Jang D.S. & Kim S.B. 1997. Seaweed composition, pp. 283–336. In: Utilization of Marine Products, 2nd Ed. Chapter 4, Hyoungsul Press.

    Google Scholar 

  • Paulert R., Talamini V., Cassolato J.E.F., Duarte M.E.R., Noseda M.D., Smania A. & Stadnik M.J. 2009. Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). J. Plant Dis. Protect. 116: 263–270.

    CAS  Google Scholar 

  • Prieto P., Pineda M. & Aguilar M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269: 337–341.

    CAS  PubMed  Google Scholar 

  • Rocha de Souza M., Marques C., Guerra Dore C., Ferreira da Silva F., Oliveira Rocha H. & Leite E. 2007. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 19: 153–160.

    CAS  PubMed  Google Scholar 

  • Ruberto G., Baratta M.T., Biondi D.M. & Amico V. 2001. An-tioxidant activity of extracts of the marine algal genus Cystoseira in a micellar model system. J. Appl. Phycol. 13: 403–407.

    Google Scholar 

  • Ruperez P., Ahrazem O. & Leal A. 2002. Potential antioxidant capacity of sulphated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50: 840–845.

    CAS  PubMed  Google Scholar 

  • Saravana Guru M.M., Mahesh Kumar P.S., Vasanthi M. & Achary A. 2013. Anticoagulant property of sulphated polysaccharides extracted from marine brown algae collected from Mandapam Island, India. Afr. J. Biotechnol. 12: 1937–1945.

    Google Scholar 

  • Shao P., Chen X. & Sun P. 2013. In vitro antioxidant and anti-tumor activities of different sulfated polysaccharides isolated from three algae. Int. J. Biol. Macromol. 62: 155–161.

    CAS  PubMed  Google Scholar 

  • Shibata T., Ishimaru K., Kawaguchi S., Yoshikawa H. & Hama Y. 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 20: 705–711.

    CAS  Google Scholar 

  • Smit A.J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 16: 245–262.

    CAS  Google Scholar 

  • Swain T. & Hillis W.E. 1959. The phenolic constituents of Prunus domestica I–the quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10: 63–68.

    CAS  Google Scholar 

  • Tsiapali E., Whaley S., Kalbfleisch J., Ensley H.E., Browder I.W. & Williams D.L. 2001. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biol. Med. 30: 393–402.

    CAS  Google Scholar 

  • Vijayabaskar P., Vaseela N. & Thirumaran G. 2012. Potential antibacterial and antioxidant properties of a sulfated polysac-charide from the brown marine algae Sargassum swartzii. Chin. J. Nat. Med. 10: 421–428.

    CAS  Google Scholar 

  • Zhang Q.B., Yu P.Z., Li Z.E., Zhang H., Xu Z.H. & Li P.C. 2003. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J. Appl. Phycol. 15: 305–310.

    CAS  Google Scholar 

  • Zhang Z., Zhang Q., Wang J., Song H., Zhang H. & Niu X. 2010. Chemical modification and influence of function groups on the in vitro-antioxidant activities of porphyran from Porphyra haitanensi. Carbohydr. Polym. 79: 290–295.

    CAS  Google Scholar 

  • Zhu Q.Y., Hackman R.M., Ensunsa J.L., Holt R.R. & Keen C.L. 2002. Antioxidative activities of oolong tea. J. Agric. Food Chem. 50: 6929–6934.

    CAS  PubMed  Google Scholar 

  • Zubia M., Robledo D. & Freile-Pelegrin Y. 2007. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol. 19: 449–458.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Life Science Research Board, DRDO, Government of India, for their financial support and Dr. M. Ganesan, Scientist, Central Salt and Marine Chemical Research Institute, Mandapam, Tamil Nadu for identifying and authenticating the algae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant Achary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravana Guru, M.M., Vasanthi, M. & Achary, A. Antioxidant and free radical scavenging potential of crude sulphated polysaccharides from Turbinaria ornata. Biologia 70, 27–33 (2015). https://doi.org/10.1515/biolog-2015-0004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0004

Key words

Navigation