Skip to main content
Log in

Systematic discovery and characterization of stress-related microRNA genes in Oryza sativa

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Abiotic stresses including drought, salinity, extreme temperatures, chemical toxicity and oxidative are the natural status of the environment to exert serious threats to agriculture. Abiotic stress-related microRNAs (ASmiRNAs) are a group of microRNAs (miRNAs) regulating stress responses in plants. However, the systematic investigation of ASmiRNAs is limited in Rice (O. sativa), a typical abiotic stress-resistant crop species. In the present work, we systematically investigated ASmiRNAs in silico. First, we identified 177 putative ASmiRNAs in O.sativa. Second, we found most ASmiRNAs were driven by TATA-promoter and most stress-related miRNA promoter regions contained the stress-related elements. Third, we found many ASmiRNAs families were species/family specific and a set of miRNAs might derive from genomic repeat-sequences in O. sativa. Finally, we found the ASmiRNAs in O. sativa target 289 genes with 1050 predicted target sites in which 98% sites have cleavage activity and 2% sites have translation inhibition activity. In conclusion, our findings provide an insight into both the function and evolution of ASmiRNAs and improve our understanding on the mechanism of abiotic stress resistance in O. sativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

pri-miRNA:

primary miRNA

pre-miRNA:

precursor miRNA

ASmiRNA:

abiotic stress-related microRNA

osa:

Oryza sativa

GO:

gene ontology

TSS:

transcription start site

TFs:

transcription factors

mRNA:

message RNA

C:

cellular component

P:

biological process

F:

molecular function

References

  • Allen E., Xie Z., Gustafson A.M., Sung G.H., Spatafora J.W. & Carrington J.C. 2004. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet. 36: 1282–1290.

    CAS  PubMed  Google Scholar 

  • Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S. & Eppig J.T. 2000. Gene Ontology: tool for the unification of biology. Nature genetics 25: 25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aukerman M.J. & Sakai H. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 15: 2730–2741.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    CAS  PubMed  Google Scholar 

  • Bartel D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell. 136: 215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen P., Sakvarelidze-Achard L., Bruun-Rasmussen M., Dunoyer P., Yamamoto Y.Y., Sieburth L. & Voinnet O. 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320: 1185–1190.

    CAS  PubMed  Google Scholar 

  • Carthew R.W. & Sontheimer E.J. 2009. Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642–655.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chekmenev D.S., Haid C. & Kel A.E. 2005. P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res 33: W432–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X., Xu S.M., Mu D.S. & Yang Z.M. 2009. Genomic analysis of rice microRNA promoters and clusters. Gene 431: 61–66.

    CAS  PubMed  Google Scholar 

  • Dai X. & Zhao P.X. 2011. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39: W155–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlgren N., Howell M.D., Kasschau K.D., Chapman E.J., Sullivan C.M., Cumbie J.S., Givan S.A., Law T.F., Grant S.R., Dangl J.L & Carrington J.C. 2007. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2: e219.

    PubMed  PubMed Central  Google Scholar 

  • Fatemi M., Pao M.M., Jeong S., Gal-Yam E.N., Egger G., Weisen-berger D.J. & Jones P.A. 2005. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 33: e176.

    Google Scholar 

  • Fujii H., Chiou T.J., Lin S.I., Aung K. & Zhu J.K. 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol. 15: 2038–2043.

    CAS  PubMed  Google Scholar 

  • Griffiths-Jones S., Saini H.K., van Dongen S. & Enright A.J. 2008. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154–158.

    CAS  PubMed  Google Scholar 

  • Griffiths-Jones S., Bateman A., Marshall M., Khanna A. & Eddy SR. 2003. Rfam: an RNA family database. Nucleic Acids Res. 31: 439–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guddeti S., Zhang D.C., Li A.L., Leseberg C.H., Kang H., Li X.G., Zhai W.X., Johns M.A. & Mao L. 2005. Molecular evolution of the rice miR395 gene family. Cell res. 15: 631–638.

    CAS  PubMed  Google Scholar 

  • Jain M., Moharana K.C., Shankar R., Kumari R. & Garg R. 2014. Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotech. J. 12: 253–264.

    CAS  Google Scholar 

  • Jian X., Zhang L., Li G., Wang X., Cao X., Fang X. & Chen F. 2010. Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics. 95: 47–55.

    CAS  PubMed  Google Scholar 

  • Jones-Rhoades M.W. & Bartel D.P. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell. 14: 787–799.

    CAS  PubMed  Google Scholar 

  • Kim V.N. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6: 376–385.

    CAS  PubMed  Google Scholar 

  • Kozomara A. & Griffiths-Jones S. 2011. miRBase: integrating mi-croRNA annotation and deep-sequencing data. Nucleic Acids Res. 39: D152–157.

    CAS  PubMed  Google Scholar 

  • Lee R.C., Feinbaum R.L. & Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    CAS  PubMed  Google Scholar 

  • Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H. & Kim V.N. 2004. MicroRNA genes are transcribed by RNA poly-merase II. EMBO J. 23: 4051–4060.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M., Dehais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouze P. & Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li A. & Mao L. 2007. Evolution of plant microRNA gene families. Cell Res. 17: 212–218.

    CAS  PubMed  Google Scholar 

  • Li T., Li H., Zhang Y.X. & Liu J.Y. 2011. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res. 39: 2821–2833.

    CAS  PubMed  Google Scholar 

  • Lu S., Sun Y.H., Shi R., Clark C., Li L. & Chiang V.L. 2005. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17: 2186–2203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maher C., Stein L. & Ware D. 2006. Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 16: 510–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers B.C., et al. 2008. Criteria for annotation of plant MicroR-NAs. Plant Cell 20: 3186–3190.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno M.A., Harper L.C., Krueger R.W., Dellaporta S.L. & Freeling M. 1997. Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 11: 616–628.

    CAS  PubMed  Google Scholar 

  • Palatnik J.F., Allen E., Wu X., Schommer C., Schwab R., Car-rington J.C. & Weigel D. 2003. Control of leaf morphogenesis by microRNAs. Nature 425: 257–263.

    CAS  PubMed  Google Scholar 

  • Piriyapongsa J. & Jordan I.K. 2008. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14: 814–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piriyapongsa J., Marino-Ramirez L. & Jordan I.K. 2007. Origin and evolution of human microRNAs from transposable elements. Genetics 176: 1323–1337.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann J.L., et al. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110.

    CAS  PubMed  Google Scholar 

  • Shahmuradov I.A., Solovyev V.V. & Gammerman A.J. 2005. Plant promoter prediction with confidence estimation. Nucleic Acids Res. 33: 1069–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaik R. & Ramakrishna W. 2012. Bioinformatic analysis of epigenetic and microRNA mediated regulation of drought responsive genes in rice. PLoS One 7: e49331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaik R. & Ramakrishna W. 2013. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice. PLoS One 8: e77261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smalheiser N.R. & Torvik V.I. 2005. Mammalian microRNAs derived from genomic repeats. Trends Genet. 21: 322–326.

    CAS  PubMed  Google Scholar 

  • Sun J., Zhou M., Mao Z. & Li C. 2012. Characterization and evolution of microRNA genes derived from repetitive elements and duplication events in plants. PLoS One 7: e34092.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R. & Zhu J.K. 2004. Novel and stress-regulated microR-NAs and other small RNAs from Arabidopsis. Plant Cell 16: 2001–2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R., Kapoor A. & Zhu J.K. 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18: 2051–2065.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G., Reinhart B.J., Bartel D.P. & Zamore P.D. 2003. A biochemical framework for RNA silencing in plants. Genes Dev. 17: 49–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H., Vazquez F., Crete P. & Bartel D.P. 2004. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18: 1187–1197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wightman B., Ha I. & Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862.

    CAS  PubMed  Google Scholar 

  • Xie Z., Allen E., Fahlgren N., Calamar A., Givan S.A. & Car-rington J.C. 2005. Expression of Arabidopsis MIRNA genes. Plant Physiol. 138: 2145–2154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z., Yu J., Li D., Liu F., Zhou X., Wang T., Ling Y. & Su Z. 2010. PMRD: plant microRNA database. Nucleic Acids Res. 38: D806–813.

    CAS  PubMed  Google Scholar 

  • Zhang L., Yu S., Zuo K., Luo L. & Tang K. 2012. Identification of gene modules associated with drought response in rice by network-based analysis. PLoS One 7: e33748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L., Liu Y., Liu Z., Kong D., Duan M. & Luo L. 2010. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J. Exp. Bot. 61: 4157–4168.

    CAS  PubMed  Google Scholar 

  • Zhou X., Wang G. & Zhang W. 2007. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol. Syst. Biol. 3: 103.

    PubMed  PubMed Central  Google Scholar 

  • Zuo Y.C. & Li Q.Z. 2011. Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility. Genomics 97: 112–120.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China (No. 30971830 and 30970348), the National Transgenic Plant R&D Project of China (No. 2009ZX08009-063B), the Major Program of Natural Science Research of Jiangsu Higher Education Institutions (No. 12KJA180005), the Youth Foundation of Nanjing Normal University Taizhou College (No. Q201206), and a grant from Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Zhou or Guo Xiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K.B., Zhou, X., Zhang, T.H. et al. Systematic discovery and characterization of stress-related microRNA genes in Oryza sativa. Biologia 70, 75–84 (2015). https://doi.org/10.1515/biolog-2015-0001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0001

Key words

Navigation