Skip to main content
Log in

Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

The haemato-biochemical indices and oxidative stress markers in horses naturally infected with Trypanosoma evansi were evaluated by analyzing the level of these parameters between T. evansi infected (microscopically positive patent group and PCR positive latent group) and infection free horses. To compare the hemato-biochemical indices and oxidative stress indicators, horses were divided into three categories based on diagnostic test employed and positive results obtained. These included Romanowsky stained slide positive group (Group I; n = 6), PCR positive group (group II; n = 28) and negative control group (group III, n = 30), revealing parasitologically positive patent, molecular positive latent and disease free status of horses. A significant reductions in total ery-throcytes count (TEC, P = 0.01), haemoglobin (Hb, P = 0.01) and packed cell volume (PCV, P = 0.04) was noticed both in group I and group II while significant neutrophilia and lymphocytopenia was observed in group I when compared to negative control group. Substantial increase in creatinine (CRTN, P = 0.032) and gamma glutamyl transferase (GGT, P = 0.012) in group I while significant decrease in glucose (GLU, P = 0.04) and iron (Fe, P = 0.01) were noticed in both group I and group II in comparison to group III. A significant difference in lipid peroxides (LPO, P = 0.01) with highest level in patent group I (15.33 ± 0.53) followed by PCR positive latent group (14.09 ± 1.66) indicates higher lipid peroxidation in erythrocytes and oxidative stress in decreasing order when compared with infection free control horses (9.83 ± 0.97). Catalase (CAT, P = 0.01) was significantly lower in para-sitological (0.82 ± 0.14) and molecular positive cases (1.27 ± 0.35) in comparison to control group (3.43 ± 0.96). The levels of su-peroxide dismutase (SOD, P = 0.01), reduced glutathione (GSH, P = 0.01) and ferric reducing antioxidant power (FRAP, P = 0.01) were significantly lower in parasito-molecular positive cases as compared to infection free control horses. An inverse correlation of RBC count with LPO and GSH and a direct correlation with catalase, SOD and FRAP was revealed. Overall, the observed substantial decreases in the oxidative parameters like catalase CAT, SOD, GSH and FRAP activities with remarkably elevated levels of LPO indicate high exposure of erythrocytes to oxidative damage in T.evansi infected horses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Baky A. A., Salem S.I. 2011. Clinicopathological and cytological studies on naturally infected camels and experimentally infected rats with Trypanosoma evansi. World Applied Sciences Journal, 14, 42–50

    CAS  Google Scholar 

  • Abenga J.N., Anosa V.O. 2007. Serum biochemical changes in experimental gambian trypanosomosis. II. Assessing hepatic and renal dysfunction. Turkish Journal of Veterinary and Animal sciences, 31, 293–296

    CAS  Google Scholar 

  • Adejinmi J.O., Akinboade O.A. 2000. Serum biochemical changes in WAD goats with experimental mixed Trypanosoma brucei and Cowdria ruminantum infections. Tropical Veterinarian, 18, 111–120

    Google Scholar 

  • Aebi H.E. 1983. Catalase. In: Bergmeyer, H.U., Ed., Methods of enzymatic analysis, Verlag Chemie, Weinhem. 273–286. DOI: 10.1016/B978-0-12-091302-2.50032-3

    Google Scholar 

  • Akanji M.A., Adeyemi O.S., Oguntoye S.O., Suleiman F. 2009. Psidium guavaja extract reduces trypanosomosis associated lipid peroxidation and raised glutathione concentrations in infected animals. Excli Journal, 8, 148–154

    Google Scholar 

  • Amanvermez R., Celik C. 2004. Superoxide dismutase, glutathione, vitamin C, total antioxidant and total thiol levels in hydatid cysts. Turkiye Klinikleri Journal of Medical Sciences, 24, pp. 2–13

    Google Scholar 

  • Anosa V.O. 1988. Haematological and biochemical changes in human and animal trypanosomosis. Part I. Revue d’élevage et de Médecine Vétérinaire des pays Tropicaux, 41, 65–78

    PubMed  CAS  Google Scholar 

  • Auten R.L., Davis J.M. 2009. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric Research, 66, 121–127. DOI: 10.1203/PDR.0b013e3181a9eafb

    Article  PubMed  CAS  Google Scholar 

  • Bal M.S., Sharma A., Ashuma Bath B.K., Kaur P., Singla L.D. 2014. Detection and management of latent infection of Try-panosoma evansi in a cattle herd. Indian Journal of Animal Research, 48, 31–37. DOI: 10.5958/j.0976-0555.48.1.007

    Article  Google Scholar 

  • Benzie I.F.F., Strain J.J. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. DOI: 10.1016/S0076-6879 (99)99005-5

    Article  PubMed  CAS  Google Scholar 

  • Brun R., Hecker H., Lun Z., 1998. Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phyloge-netic relationship. Veterinary Parasitology, 79, 95–107. DOI: 10.1016/S0304-4017(98)00146-0

    Article  PubMed  CAS  Google Scholar 

  • Bulger E.M., Maier R.V. 2001. Antioxidants in critical illness. Archives of Surgery, 136, 1201–1207. DOI: 10.1001/arch-surg.136.10.1201

    Article  PubMed  CAS  Google Scholar 

  • Cadioli F.A., Marques L.C., Machado R.Z., Alessi A.C., Aquino L.P.C.T., Barnabé P.A. 2006. Experimental Trypanosoma evansi infection in donkeys: hematological, biochemical and histopathological changes. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58, 749–756. DOI: 10.1590/S0102-09352006000500008

    Article  CAS  Google Scholar 

  • Chaudhary Z.I., Iqbal J. 2000. Incidence and haematological alterations induced by natural trypanosomiasis in racing dromedary camels. Acta Tropica, 77, 209–213. DOI.org/10.1016/S0001-706X (00)00142-X

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri S., Varshney J.P., Patra R.C. 2008. Erythrocytic antioxidant defense, lipid peroxides level and blood iron, zinc and copper concentrations in dogs naturally infected with Babesia gibsoni. Research in Veterinary Science, 85, 120–124. DOI: 10.1016/j.rvsc.2007.09.001

    Article  PubMed  CAS  Google Scholar 

  • Dargie J.D., Murray P.K., Murray M., Grimshaw W.R.T., McIntyre W.I.M. 1979. Bovine trypanosomiasis: the red cell kinetics of Ndama and Zebu cattle infected with Trypanosoma congolense. Parasitology International, 78, 271–286. DOI: 10.1017/S0031182000051143

    Article  CAS  Google Scholar 

  • De U.K., Dey S., Banerjee P.S., Sahoo M. 2012. Correlations among Anaplasma marginale parasitemia and markers of oxidative stress in crossbred calves. Tropical Animal Health and Production, 44, 385–8. DOI: 10.1007/s11250-011-9938-6

    Article  PubMed  Google Scholar 

  • Demerdash F.M., Jebur A.B., Nasr H.M. 2013. Oxidative stress and biochemical perturbations induced by insecticides mixture in rat testes. Journal of Environmental Science and Health, 48, 593–599. DOI: 10.1080/03601234.2013.774998

    Article  PubMed  Google Scholar 

  • Dimri U., Sharma M.C., Yamdagni A., Ranjan R., Zama M.M.S. 2010. Psoroptic mange infestation increases oxidative stress and decreases antioxidant status in sheep. Veterinary Parasitology, 168, 318–322. DOI: 10.1016/j.vetpar.2009.11.013

    Article  PubMed  CAS  Google Scholar 

  • Dobson R.J., Dargantes A.P., Mercado R.T., Reid S.A. 2009. Models for Trypanosoma evansi (surra), its control and economic impact on small-hold livestock owners in the Philippines. International Journal for Parasitology, 39, 1115–1123. DOI: 10.1016/j.ijpara.2009.02.013

    Article  PubMed  CAS  Google Scholar 

  • Egbu F.M.I., Ubachukwu P.O., Okoye I.C. 2013. Haematological changes due to bovine fasciolaisis. African Journal of Biotechnology, 12, 1828–1835. DOI: 10.5897/AJB12.2716.

    Article  Google Scholar 

  • Esmaeilnejad B., Tavassoli M., Asri-Rezaei S., Dalir-Naghadeh B. 2012. Evaluation of antioxidant status and oxidative stress in sheep naturally infected with Babesia ovis. Veterinary Parasitology, 185, 124–30. DOI: 10.1016/j.vetpar.2011.10.001

    Article  PubMed  CAS  Google Scholar 

  • Eyob E., Matios L. 2013. Review on camel trypanosomosis (surra) due to Trypanosoma evansi: Epidemiology and host response. Journal of Veterinary Medicine and Animal Health, 5, 334–343. DOI. 10.5897/JVMAH2013.0236

    Google Scholar 

  • Fang Y.Z., Yang S., Wu G. 2002. Free radicals, antioxidants, and nutrition. Nutrition, 18, 872–879. DOI: 10.1016/S0899-9007(02) 00916-4

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64, 97–112. DOI: 10.1146/annurev.bi.64.070195.000525

    Article  PubMed  CAS  Google Scholar 

  • Gill B.S. 1977. Trypanosomes and trypanosomiases of Indian livestock. Information Division Indian Council of Agricultural Research; New Delhi

    Google Scholar 

  • Gurbay A., Hincal F. 2004. Ciprofloxacin-induced glutathione redox status alterations in rat tissues. Drug and Chemical Toxicology, 27, 233–42. DOI: 10.1081/DCT-120037504

    Article  PubMed  Google Scholar 

  • Gutierrez C., Corbera J.A., Juste M.C., Doreste F., Morales I. 2005. An outbreak of abortions and high neonatal mortality associated with Trypanosoma evansi infection in dromedary camels in the Canary Islands. Veterinary Parasitology, 30, 163–168. DOI: 10.1016/j.vetpar.2005.02.009

    Article  Google Scholar 

  • Gutteridge J.M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41, 1819–1828

    PubMed  CAS  Google Scholar 

  • Gutteridge J., Halliwell B. 2000. Free radicals and antioxidants in the year 2000: a historical look to the future. Annals of the New York Academy of Sciences, 899, 136–147. DOI: 10.1111/j.1749-6632.2000.tb06182.x

    Article  PubMed  CAS  Google Scholar 

  • Jatkar P.R., Singh M. 1974. Pathogenesis of anemia in trypanosome infection. I V. Blood glucose studies. Indian Veterinary Journal, 51, 710–714

    Google Scholar 

  • Kahn C.M., Line S. 2010. The Merck Veterinary Manual, 10th ed. Merck & Co. Inc 2584–89

    Google Scholar 

  • Kaplowitz N. 2000. Mechanisms of liver cell injury. Journal of Hepatology, 32, 39–47. DOI: 10.1016/S0168-8278(00)80414-6

    Article  PubMed  CAS  Google Scholar 

  • Kumar R., Jain S., Kumar S., Sethi K., Kumar S., Tripathi B. N. 2017. Impact estimation of animal trypanosomosis (surra) on livestock productivity in India using simulation model: Current and future perspective. Veterinary Parasitology: Regional Studies and Reports, 10, 1–12. DOI: 10.1016/j.vprsr.2017. 06.008

    Google Scholar 

  • Kurt O., Ok U.Z., Ertan P., Yuksel H. 2002. Antioxidant substances and malaria. Acta Parasitologica Turcica. 26, 108–12

    Google Scholar 

  • Li M., You T.Z., Zhu, W.Z., Qu J.P., Liu C., Zhao B., et al. 2013. Antioxidant response and histopathological changes in brain tissue of pigeon exposed to avermectin. Ecotoxicology, 22, 1241–1254. DOI: 10.1007/s10646-013-1112-7

    Article  PubMed  CAS  Google Scholar 

  • Luckins A.G. 1988. Trypanosoma evansi in Asia. Parasitology Today 4, 137–142. DOI: 10.1016/0169-4758 (88)90188-3

    Article  PubMed  CAS  Google Scholar 

  • Marklund S., Marklund G. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474

    Article  PubMed  CAS  Google Scholar 

  • Masiga D.K., Smyth A.J., Hayes P., Bromidge T.J., Gibson W.C. 1992. Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal of Parasitology, 22, 909–918. DOI: 10.1016/0020-7519(92)90047-O

    Article  PubMed  CAS  Google Scholar 

  • Mates J.M., Perez-Gomez C., De Castro I.N. 1999. Antioxidant enzymes and human diseases. Clinical Biochemistry, 32, 595–603. DOI: 10.1016/S0009-9120(99)00075-2

    Article  PubMed  CAS  Google Scholar 

  • Meister A., Anderson M.E. 1983. Glutathione. Annual Review of Biochemistry, 52, 711–760

    Article  PubMed  CAS  Google Scholar 

  • Mijares A., Vivas J., Abad C., Betancourt M., Piñero S., Proverbio F., Marín R., Portillo R. 2010. Trypanosoma evansi: Effect of experimental infection on the osmotic fragility, lipid peroxidation and calcium- ATPase activity of rat red blood cells. Experimental Parasitology, 124, 301–305. DOI: 10.1016/ j.exppara.2009.11.002

    Article  PubMed  CAS  Google Scholar 

  • Murray R.K., Granner D.K., Mayes P.A, Rodwell V.W. 2003. Harper’s Illustrated Biochemistry a Lange Medical Book, 26th ed. The McGraw-Hill Companies, Inc., United States of America, pp. 622–701

    Google Scholar 

  • Omer O.H., Mousa H.M., Al-Wabel N. 2007. Study on the antioxi-dant status of rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 145, 142–145. DOI: 10. 1016/j.vetpar.2006.11.007

    Article  PubMed  CAS  Google Scholar 

  • Ozden S., Catalgol B., Gezginci-Oktayoglu S., Arda-Pirincci P., Bolkent S., Alpeortunga B. 2009. Methiocarb-induced ox-idative damage following subacute exposure and the protective effects of vitamin E and taurine in rats. Food and Chemical Toxicology, 47, 1676–1684. DOI: 10.1016/j.fct. 2009.04.018

    Article  PubMed  CAS  Google Scholar 

  • Padmaja K. 2012. Haemato-biochemical studies and therapy of try-panosomosis in camels. Veterinary World, 5, 356–358

    Article  Google Scholar 

  • Pamplona R., Costantini D. 2011. Molecular and structural antioxi-dant defenses against oxidative stress in animals. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301, R843–R863. DOI: 10.1152/ajpregu. 00034.2011

    Article  PubMed  CAS  Google Scholar 

  • Pandey V., Nigam R., Jaiswal A.K., Sudan V., Singh R.K., Yadav P.K. 2015. Haemato-biochemical and oxidative status of buffaloes naturally infected with Trypanosoma evansi. Veterinary Parasitology, 212, 118–122. DOI: 10.1016/j.vetpar.2015.07.025

    Article  PubMed  CAS  Google Scholar 

  • Parashar R. 2014. Prevalence of trypanosomiosis, its clinico-haemato-biochemical impact and PCR based detection in buffaloes. MVSc Thesis, DUVASU Mathura

    Google Scholar 

  • Prins H.K., Loos J.A. 1969. Glutathione In: Biochemical Methods in Red Cell Genetics. (Edited by Yunis, J.J.), Academic Press, New York. pp. 115–137

    Google Scholar 

  • Ranjithkumar M., Kamili N.M., Saxena A., Dan A., Dey S., Raut S.S. 2011. Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Veterinary Parasitology, 180, 349–353. DOI: 10.1016/j.vetpar. 2011.03.029

    Article  PubMed  CAS  Google Scholar 

  • Rehman S., Chandra O., Abdulla M. 1995. Evaluation of malondi-aldehyde as an index of lead damage in rat brain homogenates. Biometals, 8, 275–279

    PubMed  Google Scholar 

  • Rezai S.A., Dalir-Naghadeh B. 2006. Evaluation of antioxidant status and oxidative stress in cattle naturally infected with Theileria annulata. Veterinary Parasitology, 142: 179–186

    Article  Google Scholar 

  • Saker K.E. 2006. Nutrition and immune function. Veterinary Clinics of North America: Small Animal Practice, 36, 1199–1224. DOI: 10.1016/j.cvsm.2006.09.001

    Article  Google Scholar 

  • Saleh M.A., Al-Salahy M.B., Sanousi S.A. 2009. Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Veterinary Parasitology, 162, 192–199. DOI: 10.1016/j.vetpar.2009.03.035

    Article  PubMed  CAS  Google Scholar 

  • Sarror D.I. 1976. Plasma copper levels in bovine trypanosomosis. Veterinary Record, 98, pp.196

    Article  Google Scholar 

  • SAS. 2002. Statistical Analysis System. User’s Guide. SAS Institute Inc., Cary, USA

    Google Scholar 

  • Sharma A., Singla L.D., Tuli A., Kaur P., Bal M.S. 2015. Detection and assessment of risk factors associated with natural concurrent infection of Trypanosoma evansi and Anaplasma marginale in dairy animals by duplex PCR in eastern Punjab. Tropical Animal Health and Production, 47, 251–257. DOI: 10.1007/s11250-014-0710-6

    Article  PubMed  Google Scholar 

  • Sharma P., Juyal P.D., Singla L.D., Chachra D., Pawar H. 2012. Comparative evaluation of real time PCR assay with conventional parasitological techniques for diagnosis of Trypanosoma evansi in cattle and buffaloes. Veterinary Parasitology, 190, 375–382. DOI.org/10.1016/j.vetpar.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  • Singh V., Tiwari A.K. 2012. Bovine Surra in India: an update. Ruminant Science, 1, 1–7

    Google Scholar 

  • Singla L.D., Juyal P.D., Ahuja S.P. 1998. Blood brain barrier status in experimental Trypanosoma evansi infected and levamisole treated cow-calves. Indian Veterinary Journal, 75, 109–12

    Google Scholar 

  • Singla L.D., Juyal P.D., Roy K.S., Kalra I.S. 1997. Host responses of cow-calves against Trypanosoma evansi infection: Haematopathological study. Journal of Veterinary Parasitology 11, 55–63

    Google Scholar 

  • Singla L.D., Sharma A., Kaur P., Bal M.S. 2015. Comparative evaluation of agglutination assay with microscopy and polymerase chain reaction for detection of Trypanosoma evansi in bovines of Punjab. Indian Journal of Animal Sciences, 85, 1164–1166

    CAS  Google Scholar 

  • Sivajothi S., Rayulu V.C., Reddy B.S. 2013. Haematological and biochemical changes in experimental Trypanosoma evansi infection in rabbits. Journal of Parasitic Diseases. DOI: 10.1007/s12639-013-0321-6

    Google Scholar 

  • Sivajothi S., Rayulu V.C., Reddy B.S., Kumari K.N. 2015. Try-panosoma evansi causes thyroxin imbalance with biochemical alterations in wistar rats. Journal of Advanced Veterinary and Animal Research, 2, 205–209. DOI: 10.5455/javar. 2015.b68

    Article  Google Scholar 

  • Soulsby E.J.L. 2005. Helminths, Arthropods and Protozoa of Domesticated Animals. 7th Ed. Elsevier a Division of Reed Elsevier India Pvt. Ltd., New Delhi. pp. 734

    Google Scholar 

  • Spickett C.M., Jerlich A., Panasenko O.M., Arnhold J., Pitt A.R., Stelmaszyñska T., Schaur R.J. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochimica Polonica, 47, 889–900

    PubMed  CAS  Google Scholar 

  • Sumbria D., Singla L.D., Sharma A., Moudgil A.D., Bal M.S. 2014. Equine trypanosomosis in central and western Punjab: Prevalence, haemato-biochemical response and associated risk factors. Acta Tropica, 138, 44–50. DOI: 10.1016/j.actatropica. 2014.06.003

    Article  PubMed  Google Scholar 

  • Sumbria D., Singla L.D., Sharma A., Bal M.S., Kumar S. 2015. Multiplex PCR for detection of Trypanosoma evansi and Theile-ria equi in equids of Punjab, India. Veterinary Parasitology, 211, 293–99. DOI: 10.1016/j.vetpar.2015.05.018

    Article  PubMed  CAS  Google Scholar 

  • Taiwo V.O., Olaniyi M.O. and Ogunsanmi A.O. 2003. Comparative plasma biochemical changes and susceptibility of erythrocytes to in vitro peroxidation during experimental Trypanosoma congolense and T. brucei infections in sheep. Israel Journal of Veterinary Medicine, 112–117

    Google Scholar 

  • Takeet M.I., Adeleye A.I., Adebayo O.O., Akande F.A. 2009. Haematology and serum biochemical alteration in stress induced equine theileriosis. A case report. The Scientific World Journal, 4, 19–21. DOI: 10.4314/swj.v4i2.51840

    Google Scholar 

  • Takeet M.I., Fagbemi B.O. 2009. Haematological, pathological and plasma biochemical changes in rabbits experimentally infected with Trypanosoma congolense. The Scientific World Journal, 4. DOI: 10.4314/swj.v4i2.51843

  • Weinberg E.D. 1978. Iron and infection. Microbiological Reviews. 42, 45–66

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wolkmer P., da Silva A.S., Traesel C.K., Paim F.C., Cargnelutti J.F., Pagnoncelli M., Picada M.E., Monteiro S.G., dos Anjos Lopes S.T. 2009. Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 165, 41–46. DOI: 10.1016/j.vetpar.2009.06.032

    Article  PubMed  CAS  Google Scholar 

  • Wolkmer P., Schafer da Silva A., Felipetto Cargnelutti J., Machado Costa M., Kist Traesel C., dos Anjos Lopes S., Gonzalez Monteiro S. 2007. Resposta eritropoética de ratos em diferentes graus de parasitemia por Trypanosoma evansi. Ciencia Rural. 37, 1682–1687

    Article  Google Scholar 

  • Xing H., Li S., Wang Z., Gao X., Xu S., Wang X. 2012. Oxidative stress response and histopathological changes due to atrazine and chlorpyriphos exposure in common carp. Pesticide Biochemistry and Physiology, 103, 74–80. DOI: 10.1016/j.pestbp.2012.03.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Parashar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashar, R., Singla, L.D., Gupta, M. et al. Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India. Acta Parasit. 63, 733–743 (2018). https://doi.org/10.1515/ap-2018-0087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/ap-2018-0087

Keywords

Navigation