Advertisement

Acta Geophysica

, Volume 64, Issue 6, pp 2092–2113 | Cite as

Local Seismic Events in the Area of Poland Based on Data from the PASSEQ 2006–2008 Experiment

  • Marcin Polkowski
  • Beata Plesiewicz
  • Jan Wiszniowski
  • Monika Wilde-Piórko
  • Passeq Working Group
Article
  • 35 Downloads

Abstract

PASSEQ 2006–2008 (Passive Seismic Experiment in TESZ; Wilde-Piórko et al. 2008) was the biggest passive seismic experiment carried out so far in the area of Central Europe (Poland, Germany, the Czech Republic and Lithuania). 196 seismic stations (including 49 broadband seismometers) worked simultaneously for over two years. During the experiment, multiple types of data recorders and seismometers were used, making the analysis more complex and time consuming. The dataset was unified and repaired to start the detection of local seismic events. Two different approaches for detection were applied for stations located in Poland. The first one used standard STA/LTA triggers (Carl Johnson’s STA/LTA algorithm) and grid search to classify and locate the events. The result was manually verified. The second approach used Real Time Recurrent Network (RTRN) detection (Wiszniowski et al. 2014). Both methods gave similar results, showing four previously unknown seismic events located in the Gulf of Gdańsk area, situated in the southern Baltic Sea. In this paper we discuss both detection methods with their pros and cons (accuracy, efficiency, manual work required, scalability). We also show details of all detected and previously unknown events in the discussed area.

Key words

local seismicity seismic detection methods Poland 

References

  1. Allen, R. (1978), Automatic earthquake recognition and timing from single traces, Bull. Seismol. Soc. Am. 68, 5, 1521–1532.Google Scholar
  2. Allen, R. (1982), Automatic phase pickers: their present use and future prospects, Bull. Seismol. Soc. Am. 72, 6B, S225–S242.Google Scholar
  3. Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann (2010), ObsPy: A Python toolbox for seismology, SRL 81, 530–533, DOI: 10.1785/gssrl.81.3.530.Google Scholar
  4. Bratt, S.R., and T.C. Bache (1988), Locating events with a sparse network of regional arrays, Bull. Seismol. Soc. Am. 78, 2, 780–798.Google Scholar
  5. Bratt, S.R., and W. Nagy (1991), The LocSAT Program, Science Applications International Corporation.Google Scholar
  6. Crotwell, H.P., T.J. Owens, and J. Ritsema (1999), The taup toolkit: Flexible seismic travel-time and ray-path utilities, Seismol. Res. Lett. 70, 154–160, DOI: 10.1785/gssrl.70.2.154.CrossRefGoogle Scholar
  7. Ebel, J. (1996), Development of a seismic event detection and identification algorithm based on wavelet transforms, Seismol. Res. Lett. 67, 1–37.CrossRefGoogle Scholar
  8. Elman, J.L. (1990), Finding structure in time, Cognitive Sci. 4, 2, 179–211, DOI: 10.1016/0364-0213(90)90002-E.CrossRefGoogle Scholar
  9. Evans, J., and S. Allen (1983), A teleseismic-specific detection algorithm for single short period traces, Bull. Seismol. Soc. Am. 73, 4, 1173–1186.Google Scholar
  10. Gentili, S., and A. Michelini (2006), Automatic picking of P and S phases using a neural tree, J. Seismol. 0, 1, 39–63, DOI: 10.1007/s10950-006-2296-6.CrossRefGoogle Scholar
  11. Gledhill, K.R. (1985), An earthquake detector employing frequency domain techniques, Bull. Seismol. Soc. Am. 75, 6, 1827–1835.Google Scholar
  12. Goforth, T., and E. Herrin (1981), An automatic seismic signal detection algorithm based on the Walsh transform, Bull. Seismol. Soc. Am. 71, 4, 1351–1360.Google Scholar
  13. Grad, M., and M. Polkowski (2012), Seismic wave velocities in the sedimentary cover of Poland: Borehole data compilation, Acta Geophys. 60, 4, 958–1006, DOI: 10.2478/s11600-012-0022-z.CrossRefGoogle Scholar
  14. Grad, M., T. Tiira, and ESC Working Group (2009), The Moho depth map of the European Plate, Geophys. J. Int. 76, 1, 279–292, DOI: 10.1111/j.1365-246X.2008.03919.x.Google Scholar
  15. Grad, M., M. Polkowski, M. Wilde-Piórko, J. Suchcicki, and T. Arant (2015), Passive Seismic Experiment “13 BB Star” in the Margin of the East European Craton, Northern Poland, Acta Geophys. 63, 2, 352–373, DOI: 10.1515/ acgeo-2015-0006.CrossRefGoogle Scholar
  16. Johnson, C.E. (1979), CEDAR: An approach to the computer automation of shortperiod local seismic networks, Ph.D. Thesis, California Institute of Technology, Pasadena, USA.Google Scholar
  17. Joswig, M. (1990), Pattern recognition for earthquake detection, Bull. Seismol. Soc. Am. 80, 1, 170–186.Google Scholar
  18. Joswig, M. (1993), Single-trace detection and array-wide coincidence association of local earthquakes and explosions, Comput. Geosci. 9, 2, 207–221, DOI: 10.1016/0098-3004(93)90119-P.CrossRefGoogle Scholar
  19. Kennett, B.L.N., and E.R. Engdahl (1991), Traveltimes for global earthquake location and phase identification, Geophys. J. Int. 05, 2, 429–465, DOI: 10.1111/j.1365-246X.1991.tb06724.x.CrossRefGoogle Scholar
  20. Lizurek, G., B. Plesiewicz, P. Wiejacz, J. Wiszniowski, and J. Trojanowski (2013), Seismic event near Jarocin (Poland), Acta Geophys. 61, 1, 26–36, DOI: 10.2478/s11600-012-0052-6.CrossRefGoogle Scholar
  21. Madureira, G., and A.E. Ruano (2009), A neural network seismic detector, Acta Tech. Jaurinesis 2, 2, 159-170, DOI: 10.3182/20090921-3-TR-3005.00054.Google Scholar
  22. McEvilly, T.V., and E.L. Majer (1982), ASP: An automated seismic processor for microearthquake networks, Bull. Seismol. Soc. Am. 72, 1, 303–325.Google Scholar
  23. Megies, T., M. Beyreuther, R. Barsch, L. Krischer, and J. Wassermann (2011), Obspy–what can it do for data centers and observatories?, Ann. Geophys. 54, 1, 47–58, DOI: 10.4401/ag-4838.Google Scholar
  24. Meyer, K., and O. Kulhanek (1980), The gulf of Gdańsk seismic event sequence of June 25–July 3, Acta Geophys. Pol. 29, 4, 315–320.Google Scholar
  25. Pharaoh, T.C. (1999), Palaeozoic terranes and their lithospheric boundaries within the trans-european suture zone (tesz): a review, Tectonophysics 314, 1–3, 17–41, DOI: 10.1016/S0040-1951(99)00235-8.CrossRefGoogle Scholar
  26. Polkowski, M., and M. Grad (2015), Seismic wave velocities in deep sediments in Poland: Borehole and refraction data compilation, Acta Geophys. 63, 698–714, DOI: 10.1515/acgeo-2015-0019.CrossRefGoogle Scholar
  27. Tarvainen, M. (1991), Detection local and regional seismic events using the dataadaptive method at the VAF seismograph station in Finland, Bull. Seismol. Soc. Am. 81, 4, 1373–1379.Google Scholar
  28. Tiira, T. (1999), Detecting teleseismic events using artificial neural networks, Comput. Geosci. 25, 8, 929–938, DOI: 10.1016/S0098-3004(99)00056-4.CrossRefGoogle Scholar
  29. Trnkoczy, A. (2012), Understanding and parameter setting of STA/LTA trigger algorithm, New Manual of Seismological Observatory Practice 2.Google Scholar
  30. Trojanowski, J., B. Plesiewicz, and J. Wiszniowski (2015), Seismic monitoring of Poland–temporary Seismic Project with mobile Seismic Network, Acta Geophys. 63, 1, 17–44, DOI: 10.2478/s11600-014-0255-0.CrossRefGoogle Scholar
  31. Wang, J., and T.-L. Teng (1995), Artificial neural network-based seismic detector, Bull. Seismol. Soc. Am. 85, 1, 308–319.Google Scholar
  32. Wang, J., and T.-L. Teng (1997), Identification and picking of S phase using an artificial neural network, Bull. Seismol. Soc. Am. 87, 5, 1140–1149.Google Scholar
  33. Werbos, P. (1990), Backpropagation through time: what it does and how to do it, Proc. IEEE 78, 10, 1550–1560, DOI: 10.1109/5.58337.CrossRefGoogle Scholar
  34. Wessel, P., W.H. F. Smith, R. Scharroo, J.F. Luis, and F. Wobbe (2013), Generic Mapping Tools: Improved version released, EOS Trans. AGU 94, 45, 409–410.CrossRefGoogle Scholar
  35. Wiejacz, P. (2006), The Kaliningrad earthquakes of September 21, 2004, Acta Geodyn. Geomat. 3, 7–16.Google Scholar
  36. Wiejacz, P., and W. Dębski (2001), New observations of gulf of Gdansk seismic events, Phys. Earth Planet. Int. 23, 2–4, 233–245, DOI: 10.1016/S0031-9201(00)00212-0.CrossRefGoogle Scholar
  37. Wilde-Piórko, M., W.H. Geissler, J. Plomerová, M. Grad, V. Babuška, E. Brückl, J. Cyziene, W. Czuba, R. England, E. Gaczyński, R. Gazdova, S. Gregersen, A. Guterch, W. Hanka, E. Hegedűs, B. Heuer, P. Jedlička, J. Lazauskiene, G. Randy Keller, R. Kind, K. Klinge, P. Kolinsky, K. Komminaho, E. Kozlovskaya, F. Krüger, T. Larsen, M. Majdański, J. Málek, G. Motuza, O. Novotný, R. Pietrasiak, Th. Plenefisch, B. Růžek, S. Sliaupa, P. Środa, M. Świeczak, T. Tiira, P. Voss, and P. Wiejacz (2008), PASSEQ 2006–2008: Passive Seismic Experimentin Trans—European Suture Zone, Stud. Geophys. Geod. 52, 439–448.CrossRefGoogle Scholar
  38. Williams, R., and D. Zipser (1989), A learning algorithm for continually running fully recurrent neural networks, Neural Comput. 1, 2, 270–280, DOI: 10.1162/neco.1989.1.2.270.CrossRefGoogle Scholar
  39. Wiszniowski, J., B. Plesiewicz, and J. Trojanowski (2014), Application of Real Time Recurrent Neural Network for detection of small natural earthquakes in Poland, Acta Geophys. 62, 3, 469–485, DOI: 10.2478/s11600-013-0140-2.CrossRefGoogle Scholar
  40. Withers, M., R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore, and J. Trujillo (1998), A comparison of select trigger algorithms for automated global seismic phase and event detection, Bull. Seismol. Soc. Am. 88, 1, 95–106.Google Scholar

Copyright information

© Polkowski et al. 2016

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license, http://creativecommons.org/licenses/by-nc-nd/3.0/.

Authors and Affiliations

  • Marcin Polkowski
    • 1
  • Beata Plesiewicz
    • 2
  • Jan Wiszniowski
    • 2
  • Monika Wilde-Piórko
    • 1
  • Passeq Working Group
  1. 1.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Institute of GeophysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations