Skip to main content

Data-Driven Spatiotemporal Assessment of Seismicity in the Philippine Region

  • Chapter
  • First Online:
Recent Developments in Earthquake Seismology

Abstract

The present study provides a retrospective analysis of the geographical and chronological fluctuations of three basic statistical characteristics of seismicity using a big dataset of events that occurred between 1940 and 2022 in the Philippine region. For determining the spatial-time changes in a-value (seismic activity), b-value (recurrence graph slope), and z-value, the contemporary expanded software package ZMAP with numerous sophisticated seismological functions for earthquake catalog analysis is employed (parameter of the relative seismic quiescence). For the various statistical interpretations, catalog data from the United States Geological Survey (USGS) occurred in spatial windows 0° N – 20° N and 118°E – 130oN are used. The overall conclusion is that unusually low b-values and high z-values, which define zones of comparatively seismic quiescence, may be a signal of the approaching release of more severe stress in areas near zones of relatively high a-values. Thus, the suggested joint interpretation of the spatial-time fluctuations of these three statistical characteristics of seismicity may be seen as a form of the predictor of the more powerful recent seismic occurrences in the region. Furthermore, the occurrence probability of a seven magnitude event is near about one with a return period of 2 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, O. S. (2016). Automatic faults tracking from seismic data using the wavelet transform modulus Maxima lines (WTMM) method. In International Conference and Exhibition, Barcelona, Spain, 3–6 April 2016 (pp. 162–162).

    Google Scholar 

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula logN= a-bM and its confidence limits. Bulletin of the Earthquake Research Institute Tokyo, 43, 237–239.

    Google Scholar 

  • Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America, 73(3), 831–851.

    Article  Google Scholar 

  • Casado, C. L., de Galdeano, C. S., Delgado, J., & Peinado, M. A. (1995). The b parameter in the Betic Cordillera, Rif and nearby sectors. Relations with the tectonics of the region. Tectonophysics, 248(3–4), 277–292.

    Google Scholar 

  • Gervasio, F. C. (1971). Geotectonic developments of The Philippines. Journal of the Geological Society of the Philippines, 25, 18–38.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.

    Article  Google Scholar 

  • Joseph, J. D. R., Rao, K. B., & Anoop, M. B. (2011). A study on clustered and de-clustered world-wide earthquake data using GR recurrence law. International Journal of Earth Sciences and Engineering, 4, 178–182.

    Google Scholar 

  • Joswig, M. (2001). Mapping seismic quiescence in California. Bulletin of the Seismological Society of America, 91(1), 64–81.

    Google Scholar 

  • Karig, D. E. (1973). Plate convergence between The Philippines and the Ryukyu Islands. Marine Geology, 14(3), 153–168.

    Article  Google Scholar 

  • Katsumata, K., & Kasahara, M. (1999). Precursory seismic quiescence before the 1994 Kurile earthquake (M = 8.3) revealed by three independent seismic catalogs. Seismicity Patterns, their Statistical Significance and Physical Meaning, 443–470.

    Google Scholar 

  • Kushwaha, P. K., Maurya, S. P., Rai, P., & Singh, N. P. (2021). Estimation of subsurface rock properties from seismic inversion and geo-statistical methods over F3-block, Netherland. Exploration Geophysics, 52(3), 258–272.

    Article  CAS  Google Scholar 

  • Kushwaha, P. K., Maurya, S. P., Singh, N. P., & Rai, P. (2020). Use of maximum likelihood sparse spike inversion and probabilistic neural network for reservoir characterization: A study from F-3 block, The Netherlands. Journal of Petroleum Exploration and Production Technology, 10, 829–845.

    Article  Google Scholar 

  • López-Pineda, L., & Rebollar, C. J. (2005). Source characteristics of the Mw 6.2 Loreto earthquake of 12 March 2003 that occurred in a transform fault in the middle of the Gulf of California, Mexico. Bulletin of the Seismological Society of America, 95(2), 419–430.

    Article  Google Scholar 

  • Main, I. (2000). Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution: Fact or artifact? Bulletin of the Seismological Society of America, 90(1), 86–97.

    Article  Google Scholar 

  • Maurya, S. P., & Singh, N. P. (2020). Effect of Gaussian noise on seismic inversion methods. The Journal of Indian Geophysical Union, 24(1), 7–26.

    Google Scholar 

  • Maurya, S. P., Singh, R., Mahadasu, P., Singh, U. P., Singh, K. H., Singh, R., Kumar, R., & Kushwaha, P. K. (2023). Qualitative and quantitative comparison of the genetic and hybrid genetic algorithm to estimate acoustic impedance from post-stack seismic data of Blackfoot field, Canada. Geophysical Journal International, 233(2), 932–949.

    Article  CAS  Google Scholar 

  • Maurya, S. P., Singh, N. P., & Singh, K. H. (2020). Seismic inversion methods: A practical approach (Vol. 1). Springer.

    Book  Google Scholar 

  • Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute, University of Tokyo, 40, 831–853.

    Google Scholar 

  • Okal, E. A., & Kirby, S. H. (1995). Frequency-moment distribution of deep earthquakes; implications for the seismogenic zone at the bottom of slabs. Physics of the Earth and Planetary Interiors, 92(3–4), 169–187.

    Article  Google Scholar 

  • Pacheco, J. F., & Sykes, L. R. (1992). Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bulletin of the Seismological Society of America, 82(3), 1306–1349.

    Article  Google Scholar 

  • Ramos, N. T., Dimalanta, C. B., Besana, G. M., Tamayo, R. A., Yumul, G. P., & Maglambayan, V. B. (2005). Seismotectonic reactions to the arc-continent convergence in the Central Philippines. Resource Geology, 55(3), 199–206.

    Article  Google Scholar 

  • Reasenberg, P. A., & Jones, L. M. (1989). Earthquake hazard after a mainshock in California. Science, 243(4895), 1173–1176.

    Google Scholar 

  • Richa, Maurya S. P., Singh, K. H., Singh, R., Kumar, R., & Kushwaha, P. K. (2022). Application of maximum likelihood and model-based seismic inversion techniques: A case study from KG basin, India. Journal of Petroleum Exploration and Production Technology, 12, 1–19.

    Google Scholar 

  • Scholz, C. H. (1997). Size distributions for large and small earthquakes. Bulletin of the Seismological Society of America, 87(4), 1074–1077.

    Article  Google Scholar 

  • Schorlemmer, D., & Woessner, J. (2008). Probability of detecting an earthquake. Bulletin of the Seismological Society of America, 98(5), 2103–2117.

    Google Scholar 

  • Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72(5), 1677–1687.

    Google Scholar 

  • Tamayo, R. A., Jr., Yumul, G. P., Jr., Maury, R. C., Polvé, M., Cotten, J., & Bohn, M. (2001). Petrochemical investigation of the antique ophiolite (Philippines): Implications on volcanogenic massive sulfide and podiform chromitite deposits. Resource Geology, 51(2), 145–164.

    Article  CAS  Google Scholar 

  • Taylor, S. R., Rambo, J. T., & Swift, R. P. (1991). Near-source effects on regional seismograms: An analysis of the NTS explosions PERA and QUESO. Bulletin of the Seismological Society of America, 81(6), 2371–2394.

    Google Scholar 

  • Utsu, T. (1971). Seismological evidence for anomalous structure of island arcs with special reference to the Japanese region. Reviews of Geophysics, 9(4), 839–890.

    Google Scholar 

  • Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the Landers (M = 7.5) and Big Bear (M = 6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84(3), 900–916.

    Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869.

    Google Scholar 

  • Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698.

    Google Scholar 

  • Wyss, M. (1997). Second round of evaluations of proposed earthquake precursors. Pure and Applied Geophysics, 149, 3–16.

    Google Scholar 

  • Wyss, M., & Habermann, R. E. (1988). Precursory seismic quiescence. Pure and Applied Geophysics, 126, 319–332.

    Google Scholar 

Download references

Data and Resources

The catalog of earthquake events from 1940 to 2022 used in this study is obtained from USGS using the Zmap 7.0 tool in MATLAB version R2019a. All the maps and graphs are plotted using Zmap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, A. et al. (2024). Data-Driven Spatiotemporal Assessment of Seismicity in the Philippine Region. In: Kumar, R., Singh, R., Kanhaiya, S., Maurya, S.P. (eds) Recent Developments in Earthquake Seismology. Springer, Cham. https://doi.org/10.1007/978-3-031-47538-2_11

Download citation

Publish with us

Policies and ethics