AERONET (2002–2012), AERONET climatology, level 2.0 — quality assured data: Belsk, Aerosol Robotic Network, available from: http://aeronet.gsfc.nasa.gov/new_web/V2/climo_new/Belsk_500.html.
Google Scholar
Alpert, P., and B. Ziv (1989), The Sharav cyclone: observations and some theoretical considerations, J. Geophys. Res. 94, D15, 18495–18514, DOI: 10.1029/JD094iD15p18495.
Article
Google Scholar
Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer (1976), A Land Use and Land Cover Classification System for Use with Remote Sensor Data, U.S. Geol. Surv. Prof. Paper, Vol. 964, 28 pp.
Ansmann, A., J. Bösenberg, A. Chaikovsky, A. Comerón, S. Eckhardt, R. Eixmann, V. Freudenthaler, P. Ginoux, L. Komguem, H. Linné, Á.L. Márquez, V. Matthias, I. Mattis, V. Mitev, D. Müller, S. Music, S. Nickovic, J. Pelon, L. Sauvage, P. Sobolewsky, M.K. Srivastava, A. Stohl, O. Torres, G. Vaughan, U. Wandinger, and M. Wiegner (2003), Long-range transport of Saharan dust to northern Europe: The 11–16 October 2001 outbreak observed with EARLINET, J. Geophys. Res. 108, D24, 4783, DOI: 10.1029/2003JD003757.
Article
Google Scholar
Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys. 7, 81–95, DOI: 10.5194/acp-7-81-2007.
Article
Google Scholar
Bègue, N., P. Tulet, J.-P. Chaboureau, G. Roberts, L. Gomes, and M. Mallet (2012), Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging, J. Geophys. Res. 117, D17, D17201, DOI: 10.1029/2012JD017611.
Article
Google Scholar
Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher (2013), Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys. 13, 4, 2045–2062, DOI: 10.5194/acp-13-2045-2013.
Article
Google Scholar
Benedetti, A., J.-J. Morcrette, O. Boucher, A. Dethof, R.J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones, J.W. Kaiser, S. Kinne, A. Mangold, M. Razinger, A.J. Simmons, and M. Suttie (2009), Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J Geophys. Res. 114, D13, D13205, DOI: 10.1029/2008JD011115.
Article
Google Scholar
Brooks, N., and M. Legrand (2000), Dust variability over northern Africa and rainfall in the Sahel. In: S.J. McLarsen and D. Kiiverton (eds.), Linking Land Surface Change to Climate Change, Kluwer.
Google Scholar
Chand, D., R. Wood, T.L. Anderson, S.K. Satheesh, and R.J. Charlson (2009), Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nat. Geosci. 2, 3, 181–184, DOI: 10.1038/NGEO437.
Article
Google Scholar
Chen, L., G. Shi, S. Qin, S. Yang, and P. Zhang (2011), Direct radiative forcing of anthropogenic aerosols over oceans from satellite observations, Adv. Atmos. Sci. 28, 4, 973–984, DOI: 10.1007/s00376-010-9210-4.
Article
Google Scholar
Choobari, O.A., P. Zawar-Reza, and A. Sturman (2014), The global distribution of mineral dust and its impacts on the climate system: A review, Atmos. Res. 138, 152–165, DOI: 10.1016/j.atmosres.2013.11.007.
Article
Google Scholar
Christensen, J.H. (1997), The Danish Eulerian Hemispheric Model — a three-dimensional air pollution model used for the Arctic, Atmos. Environ. 31, 24, 4169–4191, DOI: 10.1016/S1352-2310(97)00264-1
Article
Google Scholar
Di Sarra, A., T. Di Iorio, and M. Cacciani (2001), Saharan dust profiles measured by lidar at Lampedusa, J. Geophys. Res. Atmos. 106, D10, 10335–10347.
Article
Google Scholar
Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY, NOAA Air Resources Laboratory, Silver Spring, MD, available from: http://ready.arl.noaa.gov/HYSPLIT.php.
Google Scholar
Duce, R.A. (1995), Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In: R. Charlson and J. Heintzenberg (eds.), Aerosol Forcing of Climate, Wiley, New York, 43–72.
Google Scholar
Engelstaedter, S., and R. Washington (2007), Atmospheric controls on the annual cycle of North African dust, J. Geophys. Res. Atmos. 112, D3, D03103, DOI: 10.1029/2006JD007195.
Article
Google Scholar
Engelstaedter, S., I. Tegen, and R. Washington (2006), North African dust emissions and transport, Earth Sci. Rev. 79, 1–2, 73–100, DOI: 10.1016/j.earscirev.2006.06.004.
Article
Google Scholar
Eresmaa, N., A. Karppinen, S.M. Joffre, J. Rasanen, and H. Talvitie (2006), Mixing height determination by ceilometers, Atmos. Chem. Phys. 6, 1485–1493.
Article
Google Scholar
Fernald, F.G. (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23, 5, 652–653.
Article
Google Scholar
Flentje, H., B. Heese, J. Reichardt, and W. Thomas (2010), Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. 3, 3643–3673, DOI: 10.5194/amtd-3-3643-2010.
Article
Google Scholar
Formenti, P., J.L. Rajot, K. Desboeufs, S. Caquineau, S. Chevaillier, S. Nava, A. Gaudichet, E. Journet, S. Triquet, S. Alfaro, M. Chiari, J. Haywood, H. Coe, and E. Highwood (2008), Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns, J. Geophys. Res. Atmos. 113, D20, D00C13, DOI: 10.1029/2008JD009903.
Google Scholar
Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, M. Garhammer, and M. Seefeldner (2009), Depolarization-ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61, 1, 165–179, DOI: 10.1111/j.1600-0889.2008.00396.x.
Article
Google Scholar
Frey, S., K. Poenitz, G. Teschke, and H. Wille (2010), Detection of aerosol layers with ceilometer and the recognition of the mixed layer depth. In: Proc. Int. Symp. for Advancement of Boundary Layer Remote (ISARS), 3646–3647.
Google Scholar
Ginoux, P., M. Chin, I. Tegen, J.M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin (2001), Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res. 106, D17, 20255–20273, DOI: 10.1029/2000JD000053.
Article
Google Scholar
Goudie, A.S., and N.J. Middleton (2001), Saharan dust storms: nature and consequences, Earth Sci. Rev. 56, 1–4, 179–204, DOI: 10.1016/S0012-8252(01)00067-8.
Article
Google Scholar
Gross, S., M. Tesche, V. Freudenthaler, C. Toledano, M. Wiegner, A. Ansmann, D. Althausen, and M. Seefeldner (2011), Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2, Tellus B 63, 4, 706–724, DOI: 10.1111/j.1600-0889.2011.00556.x.
Article
Google Scholar
Guerrero-Rascado, L., F.J. Olmo, I. Avilés-Rodríguez, F. Navas-Guzmán, D. Pérez-Ramírez, H. Lyamani, and L. Alados Arboledas (2009), Extreme Saharan dust event over the southern Iberian Peninsula in September 2007: active and passive remote sensing from surface and satellite, Atmos. Chem. Phys. 9, 21, 8453–8469.
Article
Google Scholar
Guerrero-Rascado, J.L., M.J. Costa, D. Bortoli, A.M. Silva, H. Lyamani, and L. Alados-Arboledas (2010), Infrared lidar overlap function: an experimental determination, Opt. Express 18, 19, 20350–20359, DOI: 10.1364/OE.18.020350.
Article
Google Scholar
Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometerlidar inter-comparision: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3, 3907–3924, DOI: 10.5194/amtd-3-3907-2010.
Article
Google Scholar
Heintzenberg, J. (2009), The SAMUM-1 experiment over Southern Morocco: overview and introduction, Tellus B 61, 1, 2–11, DOI: 10.1111/j.1600-0889.2008.00403.x.
Article
Google Scholar
Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc. 79, 5, 831–844, DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.
Article
Google Scholar
Hogan, T.F., and L.R. Brody (1993), Sensitivity studies of the Navy’s global forecast model parameterizations and evaluation of improvements to NOGAPS, Mon. Weather Rev. 121, 8, 2373–2395, DOI: 10.1175/1520-0493(1993)121<2373:SSOTNG>2.0.CO;2.
Article
Google Scholar
Hogan, T.F., and T.E. Rosmond (1991), The description of the Navy operational global atmospheric prediction system, Mon. Weather Rev. 119, 8, 1786–1815, DOI: 10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.
Article
Google Scholar
Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998), AERONET — A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66, 1, 1–16, DOI: 10.1016/S0034-4257(98)00031-5.
Article
Google Scholar
Huang, L., J.H. Jiang, J.L. Tackett, H. Su, and R. Fu (2013), Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations, J. Geophys. Res. Atmos. 118, 10, 4572–4596, DOI: 10.1002/jgrd.50407.
Article
Google Scholar
IPCC (2014), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)), Cambridge University Press, Cambridge, 1535 pp.
Google Scholar
Israelevich, P.L., E. Ganor, Z. Levin, J.H. Joseph (2003), Annual variations of physical properties of desert dust over Israel, J. Geophys. Res. 108, D13, 4381, DOI: 10.1029/2002JD003163.
Article
Google Scholar
Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009), Evolution of organic aerosols in the atmosphere, Science 326, 5959, 1525–1529, DOI: 10.1126/science.1180353.
Article
Google Scholar
Kandler, K., L. Schuetz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R.P. Knippertz, K. Lieke, A. Masling, A. Petzold, A. Schladitz, B. Weinzier, A. Wiedensohler, S. Zorn, and S. Weinbruch (2009), Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B 61, 1, 32–50, DOI: 10.1111/j.1600-0889.2008.00385.x.
Article
Google Scholar
Klett, J.D. (1985), Lidar inversions with variable backscatter/extinction values, Appl. Opt. 24, 11, 211–220, DOI: 10.1364/AO.24.001638.
Article
Google Scholar
Landulfo, E., A. Papayannis, P. Artaxo, A.D.A. Castanho, A.Z. de Freitas, R.F. Souza, N.D. Vieira Junior, M.P.M.P. Jorge, O.R. Sánchez-Ccoyllo, and D.S. Moreira (2003), Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season, Atmos. Chem. Phys. 3, 5, 1523–1539, DOI: 10.5194/acp-3-1523-2003.
Article
Google Scholar
Lopes, F.J.S., E. Landulfo, and M.A. Vaughan (2013), Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil, Atmos. Meas. Tech. 6, 11, 3281–3299, DOI: 10.5194/amt-6-3281-2013.
Article
Google Scholar
Maciszewska, A., K. Markowicz, and M. Witek (2010), Multi year analysis of the aerosol optical thickness over Europe, Acta Geophys. 58, 6, 1147–1163, DOI: 10.2478/s11600-010-0034-5.
Article
Google Scholar
Marécal, V., V.H. Peuch, C. Andersson, S. Andersson, J. Arteta et al. (2015), A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geosci. Model Dev. 8, 9, 2777–2813, DOI: 10.5194/gmd-8-2777-2015.
Article
Google Scholar
Markowicz, K.M., P.J. Flatau, A.M. Vogelmann, P.K. Quinn, and D. Bates (2003), Modeling and observations of infrared radiative forcing during ACE-Asia, Quart. J. Roy. Meteorol. Soc. 129, 594, 2927–2947.
Article
Google Scholar
Markowicz, K.M., P.J. Flatau, A.E. Kardas, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Techn. 25, 6, 928–944, DOI: 10.1175/2007JTECHA1016.1.
Article
Google Scholar
Markowicz, K.M., T. Zielinski, S. Blindheim, M. Gausa, A.K. Jagodnicka, A.E. Kardas, W. Kumala, Sz.P. Malinowski, M. Posyniak, T. Petelski, and T. Stacewicz (2012), Study of vertical structure of aerosol optical properties by sun photometers and ceilometer during macron campaign in 2007, Acta Geophys. 60, 5, 1308–1337, DOI: 10.2478/s11600-011-0056-7.
Article
Google Scholar
Marsham, J.H., D.J. Parker, C.M. Grams, C.M. Taylor, and J.M. Haywood (2008), Uplift of Saharan dust south of the intertropical discontinuity, J. Geophys. Res. Atmos. 113, D21, D21102.
Article
Google Scholar
Marsham, J.H., M. Hobby, C.J.T. Allen, J.R., Banks, M. Bart et al. (2013), Meteorology and dust in the central Sahara: Observations from Fennec supersite-1 during the June 2011 Intensive Observation Period, J. Geophys. Res. 118, 10, 4069–4089, DOI: 10.1002/jgrd.50211.
Google Scholar
Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Ocean. Technol. 2, 305–318.
Article
Google Scholar
McConnell, C.L., E.J. Highwood, H. Coe, P. Formenti, B. Anderson et al. (2008), Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment, J. Geophys. Res. 113, D14, DOI: 10.1029/2007JD009606.
Article
Google Scholar
McKendry, I.G., D. van der Kamp, K.B. Strawbridge, A. Christen, and B. Crawford (2009), Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar, Atmos. Environ. 43, 36, 5847–5852, DOI: 10.1016/j.atmosenv.2009.07.063.
Article
Google Scholar
Mona, L., Z. Liu, D. Müller, A. Omar, A. Papayannis, G. Pappalardo, N. Sugimoto, and M. Vaughan (2012), Lidar measurements for desert dust characterization: an overview, Adv. Meteorol. 2012, 356265, DOI: 10.1155/2012/356265.
Article
Google Scholar
Mona, L., N. Papagiannopoulos, S. Basart, J. Baldasano, and I. Binietoglou et al. (2014), EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy, Atmos. Chem. Phys. 14, 16, 8781–8793, DOI: 10.5194/acp-14-8781-2014.
Article
Google Scholar
Morcrette, J.-J. et al. (2009), Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: forward modeling, J. Geophys. Res. 114, D06206, DOI: 10.1029/2008JD011235.
Article
Google Scholar
Morys, M., Mims III, F.M. Hagerup, S. Anderson, S.E. Baker, A. Kia, and J. Walkup (2001), Design calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106, D13, 14573–14582, DOI: 10.1029/2001JD900103.
Article
Google Scholar
Münkel, C., S. Emeis, W.J. Mueller, and K.P. Schaefer (2004), Aerosol concentration measurements with a lidar ceilometer: Results of a one year measuring campaign. In: K. Schaefer et al. (eds.), Remote Sensing of Clouds and the Atmosphere VIII, International Society for Optical Engineering (SPIE Proc. 5235), 486–496.
Article
Google Scholar
Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou (2001), A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res. Atmos. 106, D16, 18113–118129, DOI: 10.1029/2000JD900794.
Article
Google Scholar
O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Ocean. Technol. 21, 5, 777–786, DOI: 10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2.
Article
Google Scholar
Osborne, S.R., B.T. Johnson, J.M. Haywood, A.J. Baran, M.A.J. Harrison et al. (2008), Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment, J. Geophys. Res. 113, D00C03, DOI: 10.1029/2007JD009551.
Article
Google Scholar
Papayannis, A., D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A.D.A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski (2005), Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project, Atmos. Chem. Phys. 5, 8, 2065–2079.
Article
Google Scholar
Papayannis, A., H.Q. Zhang, V. Amiridis, H.B. Ju, G. Chourdakis, G. Georgoussis, C. Pérez, H.B. Chen, P. Goloub, R.E. Mamouri, S. Kazadzis, D. Paronis, G. Tsaknakis, and J.M. Baldasano (2007), Extraordinary dust event over Beijing, China, during April 2006: Lidar, Sun photometric, satellite observations and model validation, J. Geophys. Res. 34, 7, L07806, DOI: 10.1029/2006GL029125.
Google Scholar
Papayannis, A., V. Amiridis, L. Mona, G. Tsaknakis, D. Balis, J. Bösenberg, A. Chaikovski, F. De Tomasi, I. Grigorov, I. Mattis, V. Mitev, D. Müller, S. Nickovic, C. Pérez, A. Pietruczuk, G. Pisani, F. Ravetta, V. Rizi, M. Sicard, T. Trickl, M. Wiegner, and M. Gerding (2008), Systematic lidar observations of aerosol optical properties during Saharan dust intrusions over Europe, in the frame of EARLINET (2000–2002): Statistical analysis and results, J. Geophys. Res. 113, D10, D10204, DOI: 10.1029/2007JD009028.
Article
Google Scholar
Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo et al. (2013), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys. 13, 8, 4429–4450, DOI: 10.5194/acp-13-4429-2013.
Article
Google Scholar
Pavese, G., M. Calvello, F. Esposito, L. Leone, and R. Restieri (2012), Effects of Saharan dust advection on atmospheric aerosol properties in the West-Mediterranean area, Adv. Meteorol. 2012, 730579, DOI: 10.1155/2012/730579.
Article
Google Scholar
Perez, C., S. Nickovic, G. Pejanovic, J. M. Baldasano, and E. Ozsoy (2006a), Interactive dust-radiation modeling: A step to improve weather forecasts, J. Geophys. Res. 111, D16, D16206, DOI: 10.1029/2005JD006717.
Article
Google Scholar
Perez, C., S. Nickovic, J.M. Baldasano, M. Sicard, F. Rocadenbosch, and V.E. Cachorro (2006b), A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, J. Geophys. Res. 111, D15, D15214, DOI: 10.1029/2005JD006579.
Article
Google Scholar
Pisani, G., A. Boselli, N. Spinelli, and X. Wang (2011), Characterization of Saharan dust layers over Naples (Italy) during 2000–2003 EARLINET project, Atmos. Res. 102, 3, 286–299, DOI: 10.1016/j.atmosres.2011.07.012.
Article
Google Scholar
Preißler, J., F. Wagner, S.N. Pereira, and J.L. Guerrero-Rascado (2011), Multi-instrumental observation of an exceptionally strong Saharan dust outbreak over Portugal, J. Geophys. Res. 116, D24, D24204, DOI: 10.1029/2011JD016527.
Article
Google Scholar
Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill (2002), Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (toms) absorbing aerosol product, Rev. Geophys. 40, 1, 2-1–2-31, DOI: 10.1029/2000RG000095.
Google Scholar
Sasano, Y., E.V. Browell, and S. Ismail (1985), Error caused by Rusing a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24, 22, 3929–3932, DOI: 10.1364/AO.24.003929.
Article
Google Scholar
Schutgens, N., M. Nakata, and T. Nakajima (2012), Estimating aerosol emissions by assimilating remote sensing observations into a global transport model, Remote Sens. 4, 11, 3528–3543, DOI: 10.3390/rs4113528.
Article
Google Scholar
Shifrin, K.S. (1995), Simple relationships for the Angstrom parameter of disperse systems, Appl. Opt. 34, 21, 4480–4485, DOI: 10.1364/AO.34.004480.
Article
Google Scholar
Sinha, P., D. Kaskaoutis, R. Manchanda, and S. Sreenivasan (2012), Characteristics of aerosols over Hyderabad in southern Peninsular India: synergy in the classification techniques, Ann. Geophys. 30, 9, 1393–1410, DOI: 10.5194/angeo-30-1393-2012.
Article
Google Scholar
Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloud screening and quality control algorithms for the AERONET database, Rem. Sens. Env. 73, 3, 337–349, DOI: 10.1016/S0034-4257(00)00109-7.
Article
Google Scholar
Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10, 6, 2813–2824, DOI: 10.5194/acp-10-2813-2010.
Article
Google Scholar
Stachlewska, I.S., K.M. Markowicz, and M. Piądłowski (2010), On forward Klett’s inversion of ceilometer signals. In: 25th ILRC International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia.
Google Scholar
Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60, 5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.
Article
Google Scholar
Sundström, A.-M., T. Nousiainen, and T. Petäjä (2009), On the quantitative lowlevel aerosol measurements using ceilometer-type lidar, J. Atmos. Ocean. Technol. 26, 11, 2340–2352, DOI: 10.1175/2009JTECHA1252.1.
Article
Google Scholar
Tegen, I., K. Schepanski, and B Heinold (2013), Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations, Atmos. Chem. Phys. 13, 5, 2381–2390, DOI: 10.5194/acp-13-2381-2013.
Article
Google Scholar
Tesche, M., A. Ansmann, D. Mueller, D. Althausen, I. Mattis et al. (2009), Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM, Tellus B 61, 1, 144–164, DOI: 10.1111/j.1600-0889.2008.00390.x.
Article
Google Scholar
Varga, G., J. Kovács, and G. Újvári (2013), Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979–2011, Global Planet Change 100, 333–342, DOI: 10.1016/j.gloplacha.2012. 11.007.
Article
Google Scholar
Vogelmann, A., P. Flatau, M. Szczodrak, K. Markowicz, and P. Minnett (2003), Observations of large greenhouse effects for anthropogenic aerosols, Geophys. Res. Lett. 30, 12, 1654–1657.
Article
Google Scholar
Wagner, F., and A.M. Silva (2008), Some considerations about Angström exponent distributions, Atmos. Chem. Phys. 8, 3, 481–489.
Article
Google Scholar
Wandinger, U., and A. Ansmann (2002), Experimental determination of the lidar overlap profile with Raman lidar, Appl. Opt. 41, 3, 511–514, DOI: 10.1364/AO.41.000511.
Article
Google Scholar
Wang, X., A. Boselli, L. D’Avino, G. Pisani, N. Spinelli, A. Amodeo, A. Chaikovsky, M. Wiegner, S. Nickovic, A. Papayannis, M.R. Perrone, V. Rizi, L. Sauvage, and A. Stohl (2008), Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001–2002, Atmos. Environ. 42, 5, 893–905, DOI: 10.1016/j.atmosenv.2007.10.020.
Article
Google Scholar
Wang, Z., H.H. Zhang, X. Jing, and X. Wei (2013), Effect of non-spherical dust aerosol on its direct radiative forcing, Atmos. Res. 120, 112–126, DOI: 10.1016/j.atmosres.2012.08.006.
Article
Google Scholar
ei]Weitkamp, C. (ed.) (2005), Lidar: Range-resolved Optical Remote Sensing of the Atmosphere, Springer, New York.
Book
Google Scholar
Westphal, D.L., O.B. Toon, and T.N. Carlson (1988), A case study of mobilization and transport of Saharan dust, J. Atmos. Sci. 45, 15, 2145–2175, DOI: 10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2.
Article
Google Scholar
Wiegner, M., and A. Geiß (2012), Aerosol profiling with the Jenoptik ceilometer CHM15kx, Atmos. Meas. Tech. 5, 8, 1953–1964, DOI: 10.5194/amt-5-1953-2012.
Article
Google Scholar
Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D8, D08215, DOI: 10.1029/2006JD007779.
Article
Google Scholar
Wong, M.S., M.I. Shahzad, J.E. Nichol, K.H. Lee, and P.W. Chan (2013), Validation of MODIS, MISR, OMI, and CALIPSO aerosol optical thickness using ground-based sunphotometers in Hong Kong, Int. J. Remote Sens. 34, 3, 897–918, DOI: 10.1080/01431161.2012.720739.
Article
Google Scholar
Zawadzka, O., K. Markowicz, A. Pietruczuk, T. Zielinski, and J. Jaroslawski (2013), Impact of urban pollution emitted in Warsaw on aerosol properties, Atmos. Environ. 69, 15–28, DOI: 10.1016/j.atmosenv.2012.11.065.
Article
Google Scholar
Zhang, J., J.S. Reid, D.L. Westphal, N.L. Baker, and E.J. Hyer (2008), A system for operational aerosol optical depth data assimilation over global oceans, J. Geophys. Res. 113, D10, D10208, DOI: 10.1029/2007JD009065.
Article
Google Scholar