Acta Geophysica

, Volume 64, Issue 6, pp 2550–2590 | Cite as

Modelling and Observation of Mineral Dust Optical Properties over Central Europe

  • Michał T. Chilinski
  • Krzysztof M. Markowicz
  • Olga Zawadzka
  • Iwona S. Stachlewska
  • Wojciech Kumala
  • Tomasz Petelski
  • Przemysław Makuch
  • Douglas L. Westphal
  • Bogdan Zagajewski


This paper is focused on Saharan dust transport to Central Europe/Poland; we compare properties of atmospheric Saharan dust using data from NAAPS, MACC, AERONET as well as observations obtained during HyMountEcos campaign in June 2012. Ten years of dust climatology shows that long-range transport of Saharan dust to Central Europe is mostly during spring and summer. HYSPLIT back-trajectories indicate airmass transport mainly in November, but it does not agree with modeled maxima of dust optical depth. NAAPS model shows maximum of dust optical depth (~0.04–0.05, 550 nm) in April–May, but the MACC modeled peak is broader (~0.04). During occurrence of mineral dust over Central-Europe for 14% (NAAPS) / 12% (MACC) of days dust optical depths are above 0.05 and during 4% (NAAPS) / 2.5% (MACC) of days dust optical depths exceed 0.1. The HyMountEcos campaign took place in June–July 2012 in the mountainous region of Karkonosze. The analysis includes remote sensing data from lidars, sunphotometers, and numerical simulations from NAAPS, MACC, DREAM8b models. Comparison of simulations with observations demonstrates the ability of models to reasonably reproduce aerosol vertical distributions and their temporal variability. However, significant differences between simulated and measured AODs were found. The best agreement was achieved for MACC model.

Key words

aerosol mineral dust MACC NAAPS DREAM aerosol transport model remote sensing 


  1. AERONET (2002–2012), AERONET climatology, level 2.0 — quality assured data: Belsk, Aerosol Robotic Network, available from: Scholar
  2. Alpert, P., and B. Ziv (1989), The Sharav cyclone: observations and some theoretical considerations, J. Geophys. Res. 94, D15, 18495–18514, DOI: 10.1029/JD094iD15p18495.CrossRefGoogle Scholar
  3. Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer (1976), A Land Use and Land Cover Classification System for Use with Remote Sensor Data, U.S. Geol. Surv. Prof. Paper, Vol. 964, 28 pp.Google Scholar
  4. Ansmann, A., J. Bösenberg, A. Chaikovsky, A. Comerón, S. Eckhardt, R. Eixmann, V. Freudenthaler, P. Ginoux, L. Komguem, H. Linné, Á.L. Márquez, V. Matthias, I. Mattis, V. Mitev, D. Müller, S. Music, S. Nickovic, J. Pelon, L. Sauvage, P. Sobolewsky, M.K. Srivastava, A. Stohl, O. Torres, G. Vaughan, U. Wandinger, and M. Wiegner (2003), Long-range transport of Saharan dust to northern Europe: The 11–16 October 2001 outbreak observed with EARLINET, J. Geophys. Res. 108, D24, 4783, DOI: 10.1029/2003JD003757.CrossRefGoogle Scholar
  5. Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys. 7, 81–95, DOI: 10.5194/acp-7-81-2007.CrossRefGoogle Scholar
  6. Bègue, N., P. Tulet, J.-P. Chaboureau, G. Roberts, L. Gomes, and M. Mallet (2012), Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging, J. Geophys. Res. 117, D17, D17201, DOI: 10.1029/2012JD017611.CrossRefGoogle Scholar
  7. Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher (2013), Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys. 13, 4, 2045–2062, DOI: 10.5194/acp-13-2045-2013.CrossRefGoogle Scholar
  8. Benedetti, A., J.-J. Morcrette, O. Boucher, A. Dethof, R.J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones, J.W. Kaiser, S. Kinne, A. Mangold, M. Razinger, A.J. Simmons, and M. Suttie (2009), Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J Geophys. Res. 114, D13, D13205, DOI: 10.1029/2008JD011115.CrossRefGoogle Scholar
  9. Brooks, N., and M. Legrand (2000), Dust variability over northern Africa and rainfall in the Sahel. In: S.J. McLarsen and D. Kiiverton (eds.), Linking Land Surface Change to Climate Change, Kluwer.Google Scholar
  10. Chand, D., R. Wood, T.L. Anderson, S.K. Satheesh, and R.J. Charlson (2009), Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nat. Geosci. 2, 3, 181–184, DOI: 10.1038/NGEO437.CrossRefGoogle Scholar
  11. Chen, L., G. Shi, S. Qin, S. Yang, and P. Zhang (2011), Direct radiative forcing of anthropogenic aerosols over oceans from satellite observations, Adv. Atmos. Sci. 28, 4, 973–984, DOI: 10.1007/s00376-010-9210-4.CrossRefGoogle Scholar
  12. Choobari, O.A., P. Zawar-Reza, and A. Sturman (2014), The global distribution of mineral dust and its impacts on the climate system: A review, Atmos. Res. 138, 152–165, DOI: 10.1016/j.atmosres.2013.11.007.CrossRefGoogle Scholar
  13. Christensen, J.H. (1997), The Danish Eulerian Hemispheric Model — a three-dimensional air pollution model used for the Arctic, Atmos. Environ. 31, 24, 4169–4191, DOI: 10.1016/S1352-2310(97)00264-1CrossRefGoogle Scholar
  14. Di Sarra, A., T. Di Iorio, and M. Cacciani (2001), Saharan dust profiles measured by lidar at Lampedusa, J. Geophys. Res. Atmos. 106, D10, 10335–10347.CrossRefGoogle Scholar
  15. Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY, NOAA Air Resources Laboratory, Silver Spring, MD, available from: Scholar
  16. Duce, R.A. (1995), Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In: R. Charlson and J. Heintzenberg (eds.), Aerosol Forcing of Climate, Wiley, New York, 43–72.Google Scholar
  17. Engelstaedter, S., and R. Washington (2007), Atmospheric controls on the annual cycle of North African dust, J. Geophys. Res. Atmos. 112, D3, D03103, DOI: 10.1029/2006JD007195.CrossRefGoogle Scholar
  18. Engelstaedter, S., I. Tegen, and R. Washington (2006), North African dust emissions and transport, Earth Sci. Rev. 79, 1–2, 73–100, DOI: 10.1016/j.earscirev.2006.06.004.CrossRefGoogle Scholar
  19. Eresmaa, N., A. Karppinen, S.M. Joffre, J. Rasanen, and H. Talvitie (2006), Mixing height determination by ceilometers, Atmos. Chem. Phys. 6, 1485–1493.CrossRefGoogle Scholar
  20. Fernald, F.G. (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23, 5, 652–653.CrossRefGoogle Scholar
  21. Flentje, H., B. Heese, J. Reichardt, and W. Thomas (2010), Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. 3, 3643–3673, DOI: 10.5194/amtd-3-3643-2010.CrossRefGoogle Scholar
  22. Formenti, P., J.L. Rajot, K. Desboeufs, S. Caquineau, S. Chevaillier, S. Nava, A. Gaudichet, E. Journet, S. Triquet, S. Alfaro, M. Chiari, J. Haywood, H. Coe, and E. Highwood (2008), Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns, J. Geophys. Res. Atmos. 113, D20, D00C13, DOI: 10.1029/2008JD009903.Google Scholar
  23. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, M. Garhammer, and M. Seefeldner (2009), Depolarization-ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61, 1, 165–179, DOI: 10.1111/j.1600-0889.2008.00396.x.CrossRefGoogle Scholar
  24. Frey, S., K. Poenitz, G. Teschke, and H. Wille (2010), Detection of aerosol layers with ceilometer and the recognition of the mixed layer depth. In: Proc. Int. Symp. for Advancement of Boundary Layer Remote (ISARS), 3646–3647.Google Scholar
  25. Ginoux, P., M. Chin, I. Tegen, J.M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin (2001), Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res. 106, D17, 20255–20273, DOI: 10.1029/2000JD000053.CrossRefGoogle Scholar
  26. Goudie, A.S., and N.J. Middleton (2001), Saharan dust storms: nature and consequences, Earth Sci. Rev. 56, 1–4, 179–204, DOI: 10.1016/S0012-8252(01)00067-8.CrossRefGoogle Scholar
  27. Gross, S., M. Tesche, V. Freudenthaler, C. Toledano, M. Wiegner, A. Ansmann, D. Althausen, and M. Seefeldner (2011), Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2, Tellus B 63, 4, 706–724, DOI: 10.1111/j.1600-0889.2011.00556.x.CrossRefGoogle Scholar
  28. Guerrero-Rascado, L., F.J. Olmo, I. Avilés-Rodríguez, F. Navas-Guzmán, D. Pérez-Ramírez, H. Lyamani, and L. Alados Arboledas (2009), Extreme Saharan dust event over the southern Iberian Peninsula in September 2007: active and passive remote sensing from surface and satellite, Atmos. Chem. Phys. 9, 21, 8453–8469.CrossRefGoogle Scholar
  29. Guerrero-Rascado, J.L., M.J. Costa, D. Bortoli, A.M. Silva, H. Lyamani, and L. Alados-Arboledas (2010), Infrared lidar overlap function: an experimental determination, Opt. Express 18, 19, 20350–20359, DOI: 10.1364/OE.18.020350.CrossRefGoogle Scholar
  30. Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometerlidar inter-comparision: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3, 3907–3924, DOI: 10.5194/amtd-3-3907-2010.CrossRefGoogle Scholar
  31. Heintzenberg, J. (2009), The SAMUM-1 experiment over Southern Morocco: overview and introduction, Tellus B 61, 1, 2–11, DOI: 10.1111/j.1600-0889.2008.00403.x.CrossRefGoogle Scholar
  32. Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc. 79, 5, 831–844, DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.CrossRefGoogle Scholar
  33. Hogan, T.F., and L.R. Brody (1993), Sensitivity studies of the Navy’s global forecast model parameterizations and evaluation of improvements to NOGAPS, Mon. Weather Rev. 121, 8, 2373–2395, DOI: 10.1175/1520-0493(1993)121<2373:SSOTNG>2.0.CO;2.CrossRefGoogle Scholar
  34. Hogan, T.F., and T.E. Rosmond (1991), The description of the Navy operational global atmospheric prediction system, Mon. Weather Rev. 119, 8, 1786–1815, DOI: 10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.CrossRefGoogle Scholar
  35. Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998), AERONET — A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66, 1, 1–16, DOI: 10.1016/S0034-4257(98)00031-5.CrossRefGoogle Scholar
  36. Huang, L., J.H. Jiang, J.L. Tackett, H. Su, and R. Fu (2013), Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations, J. Geophys. Res. Atmos. 118, 10, 4572–4596, DOI: 10.1002/jgrd.50407.CrossRefGoogle Scholar
  37. IPCC (2014), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)), Cambridge University Press, Cambridge, 1535 pp.Google Scholar
  38. Israelevich, P.L., E. Ganor, Z. Levin, J.H. Joseph (2003), Annual variations of physical properties of desert dust over Israel, J. Geophys. Res. 108, D13, 4381, DOI: 10.1029/2002JD003163.CrossRefGoogle Scholar
  39. Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009), Evolution of organic aerosols in the atmosphere, Science 326, 5959, 1525–1529, DOI: 10.1126/science.1180353.CrossRefGoogle Scholar
  40. Kandler, K., L. Schuetz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R.P. Knippertz, K. Lieke, A. Masling, A. Petzold, A. Schladitz, B. Weinzier, A. Wiedensohler, S. Zorn, and S. Weinbruch (2009), Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B 61, 1, 32–50, DOI: 10.1111/j.1600-0889.2008.00385.x.CrossRefGoogle Scholar
  41. Klett, J.D. (1985), Lidar inversions with variable backscatter/extinction values, Appl. Opt. 24, 11, 211–220, DOI: 10.1364/AO.24.001638.CrossRefGoogle Scholar
  42. Landulfo, E., A. Papayannis, P. Artaxo, A.D.A. Castanho, A.Z. de Freitas, R.F. Souza, N.D. Vieira Junior, M.P.M.P. Jorge, O.R. Sánchez-Ccoyllo, and D.S. Moreira (2003), Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season, Atmos. Chem. Phys. 3, 5, 1523–1539, DOI: 10.5194/acp-3-1523-2003.CrossRefGoogle Scholar
  43. Lopes, F.J.S., E. Landulfo, and M.A. Vaughan (2013), Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil, Atmos. Meas. Tech. 6, 11, 3281–3299, DOI: 10.5194/amt-6-3281-2013.CrossRefGoogle Scholar
  44. Maciszewska, A., K. Markowicz, and M. Witek (2010), Multi year analysis of the aerosol optical thickness over Europe, Acta Geophys. 58, 6, 1147–1163, DOI: 10.2478/s11600-010-0034-5.CrossRefGoogle Scholar
  45. Marécal, V., V.H. Peuch, C. Andersson, S. Andersson, J. Arteta et al. (2015), A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geosci. Model Dev. 8, 9, 2777–2813, DOI: 10.5194/gmd-8-2777-2015.CrossRefGoogle Scholar
  46. Markowicz, K.M., P.J. Flatau, A.M. Vogelmann, P.K. Quinn, and D. Bates (2003), Modeling and observations of infrared radiative forcing during ACE-Asia, Quart. J. Roy. Meteorol. Soc. 129, 594, 2927–2947.CrossRefGoogle Scholar
  47. Markowicz, K.M., P.J. Flatau, A.E. Kardas, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Techn. 25, 6, 928–944, DOI: 10.1175/2007JTECHA1016.1.CrossRefGoogle Scholar
  48. Markowicz, K.M., T. Zielinski, S. Blindheim, M. Gausa, A.K. Jagodnicka, A.E. Kardas, W. Kumala, Sz.P. Malinowski, M. Posyniak, T. Petelski, and T. Stacewicz (2012), Study of vertical structure of aerosol optical properties by sun photometers and ceilometer during macron campaign in 2007, Acta Geophys. 60, 5, 1308–1337, DOI: 10.2478/s11600-011-0056-7.CrossRefGoogle Scholar
  49. Marsham, J.H., D.J. Parker, C.M. Grams, C.M. Taylor, and J.M. Haywood (2008), Uplift of Saharan dust south of the intertropical discontinuity, J. Geophys. Res. Atmos. 113, D21, D21102.CrossRefGoogle Scholar
  50. Marsham, J.H., M. Hobby, C.J.T. Allen, J.R., Banks, M. Bart et al. (2013), Meteorology and dust in the central Sahara: Observations from Fennec supersite-1 during the June 2011 Intensive Observation Period, J. Geophys. Res. 118, 10, 4069–4089, DOI: 10.1002/jgrd.50211.Google Scholar
  51. Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Ocean. Technol. 2, 305–318.CrossRefGoogle Scholar
  52. McConnell, C.L., E.J. Highwood, H. Coe, P. Formenti, B. Anderson et al. (2008), Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment, J. Geophys. Res. 113, D14, DOI: 10.1029/2007JD009606.CrossRefGoogle Scholar
  53. McKendry, I.G., D. van der Kamp, K.B. Strawbridge, A. Christen, and B. Crawford (2009), Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar, Atmos. Environ. 43, 36, 5847–5852, DOI: 10.1016/j.atmosenv.2009.07.063.CrossRefGoogle Scholar
  54. Mona, L., Z. Liu, D. Müller, A. Omar, A. Papayannis, G. Pappalardo, N. Sugimoto, and M. Vaughan (2012), Lidar measurements for desert dust characterization: an overview, Adv. Meteorol. 2012, 356265, DOI: 10.1155/2012/356265.CrossRefGoogle Scholar
  55. Mona, L., N. Papagiannopoulos, S. Basart, J. Baldasano, and I. Binietoglou et al. (2014), EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy, Atmos. Chem. Phys. 14, 16, 8781–8793, DOI: 10.5194/acp-14-8781-2014.CrossRefGoogle Scholar
  56. Morcrette, J.-J. et al. (2009), Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: forward modeling, J. Geophys. Res. 114, D06206, DOI: 10.1029/2008JD011235.CrossRefGoogle Scholar
  57. Morys, M., Mims III, F.M. Hagerup, S. Anderson, S.E. Baker, A. Kia, and J. Walkup (2001), Design calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106, D13, 14573–14582, DOI: 10.1029/2001JD900103.CrossRefGoogle Scholar
  58. Münkel, C., S. Emeis, W.J. Mueller, and K.P. Schaefer (2004), Aerosol concentration measurements with a lidar ceilometer: Results of a one year measuring campaign. In: K. Schaefer et al. (eds.), Remote Sensing of Clouds and the Atmosphere VIII, International Society for Optical Engineering (SPIE Proc. 5235), 486–496.CrossRefGoogle Scholar
  59. Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou (2001), A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res. Atmos. 106, D16, 18113–118129, DOI: 10.1029/2000JD900794.CrossRefGoogle Scholar
  60. O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Ocean. Technol. 21, 5, 777–786, DOI: 10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2.CrossRefGoogle Scholar
  61. Osborne, S.R., B.T. Johnson, J.M. Haywood, A.J. Baran, M.A.J. Harrison et al. (2008), Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment, J. Geophys. Res. 113, D00C03, DOI: 10.1029/2007JD009551.CrossRefGoogle Scholar
  62. Papayannis, A., D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A.D.A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski (2005), Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project, Atmos. Chem. Phys. 5, 8, 2065–2079.CrossRefGoogle Scholar
  63. Papayannis, A., H.Q. Zhang, V. Amiridis, H.B. Ju, G. Chourdakis, G. Georgoussis, C. Pérez, H.B. Chen, P. Goloub, R.E. Mamouri, S. Kazadzis, D. Paronis, G. Tsaknakis, and J.M. Baldasano (2007), Extraordinary dust event over Beijing, China, during April 2006: Lidar, Sun photometric, satellite observations and model validation, J. Geophys. Res. 34, 7, L07806, DOI: 10.1029/2006GL029125.Google Scholar
  64. Papayannis, A., V. Amiridis, L. Mona, G. Tsaknakis, D. Balis, J. Bösenberg, A. Chaikovski, F. De Tomasi, I. Grigorov, I. Mattis, V. Mitev, D. Müller, S. Nickovic, C. Pérez, A. Pietruczuk, G. Pisani, F. Ravetta, V. Rizi, M. Sicard, T. Trickl, M. Wiegner, and M. Gerding (2008), Systematic lidar observations of aerosol optical properties during Saharan dust intrusions over Europe, in the frame of EARLINET (2000–2002): Statistical analysis and results, J. Geophys. Res. 113, D10, D10204, DOI: 10.1029/2007JD009028.CrossRefGoogle Scholar
  65. Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo et al. (2013), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys. 13, 8, 4429–4450, DOI: 10.5194/acp-13-4429-2013.CrossRefGoogle Scholar
  66. Pavese, G., M. Calvello, F. Esposito, L. Leone, and R. Restieri (2012), Effects of Saharan dust advection on atmospheric aerosol properties in the West-Mediterranean area, Adv. Meteorol. 2012, 730579, DOI: 10.1155/2012/730579.CrossRefGoogle Scholar
  67. Perez, C., S. Nickovic, G. Pejanovic, J. M. Baldasano, and E. Ozsoy (2006a), Interactive dust-radiation modeling: A step to improve weather forecasts, J. Geophys. Res. 111, D16, D16206, DOI: 10.1029/2005JD006717.CrossRefGoogle Scholar
  68. Perez, C., S. Nickovic, J.M. Baldasano, M. Sicard, F. Rocadenbosch, and V.E. Cachorro (2006b), A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, J. Geophys. Res. 111, D15, D15214, DOI: 10.1029/2005JD006579.CrossRefGoogle Scholar
  69. Pisani, G., A. Boselli, N. Spinelli, and X. Wang (2011), Characterization of Saharan dust layers over Naples (Italy) during 2000–2003 EARLINET project, Atmos. Res. 102, 3, 286–299, DOI: 10.1016/j.atmosres.2011.07.012.CrossRefGoogle Scholar
  70. Preißler, J., F. Wagner, S.N. Pereira, and J.L. Guerrero-Rascado (2011), Multi-instrumental observation of an exceptionally strong Saharan dust outbreak over Portugal, J. Geophys. Res. 116, D24, D24204, DOI: 10.1029/2011JD016527.CrossRefGoogle Scholar
  71. Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill (2002), Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (toms) absorbing aerosol product, Rev. Geophys. 40, 1, 2-1–2-31, DOI: 10.1029/2000RG000095.Google Scholar
  72. Sasano, Y., E.V. Browell, and S. Ismail (1985), Error caused by Rusing a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24, 22, 3929–3932, DOI: 10.1364/AO.24.003929.CrossRefGoogle Scholar
  73. Schutgens, N., M. Nakata, and T. Nakajima (2012), Estimating aerosol emissions by assimilating remote sensing observations into a global transport model, Remote Sens. 4, 11, 3528–3543, DOI: 10.3390/rs4113528.CrossRefGoogle Scholar
  74. Shifrin, K.S. (1995), Simple relationships for the Angstrom parameter of disperse systems, Appl. Opt. 34, 21, 4480–4485, DOI: 10.1364/AO.34.004480.CrossRefGoogle Scholar
  75. Sinha, P., D. Kaskaoutis, R. Manchanda, and S. Sreenivasan (2012), Characteristics of aerosols over Hyderabad in southern Peninsular India: synergy in the classification techniques, Ann. Geophys. 30, 9, 1393–1410, DOI: 10.5194/angeo-30-1393-2012.CrossRefGoogle Scholar
  76. Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloud screening and quality control algorithms for the AERONET database, Rem. Sens. Env. 73, 3, 337–349, DOI: 10.1016/S0034-4257(00)00109-7.CrossRefGoogle Scholar
  77. Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10, 6, 2813–2824, DOI: 10.5194/acp-10-2813-2010.CrossRefGoogle Scholar
  78. Stachlewska, I.S., K.M. Markowicz, and M. Piądłowski (2010), On forward Klett’s inversion of ceilometer signals. In: 25th ILRC International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia.Google Scholar
  79. Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60, 5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.CrossRefGoogle Scholar
  80. Sundström, A.-M., T. Nousiainen, and T. Petäjä (2009), On the quantitative lowlevel aerosol measurements using ceilometer-type lidar, J. Atmos. Ocean. Technol. 26, 11, 2340–2352, DOI: 10.1175/2009JTECHA1252.1.CrossRefGoogle Scholar
  81. Tegen, I., K. Schepanski, and B Heinold (2013), Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations, Atmos. Chem. Phys. 13, 5, 2381–2390, DOI: 10.5194/acp-13-2381-2013.CrossRefGoogle Scholar
  82. Tesche, M., A. Ansmann, D. Mueller, D. Althausen, I. Mattis et al. (2009), Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM, Tellus B 61, 1, 144–164, DOI: 10.1111/j.1600-0889.2008.00390.x.CrossRefGoogle Scholar
  83. Varga, G., J. Kovács, and G. Újvári (2013), Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979–2011, Global Planet Change 100, 333–342, DOI: 10.1016/j.gloplacha.2012. 11.007.CrossRefGoogle Scholar
  84. Vogelmann, A., P. Flatau, M. Szczodrak, K. Markowicz, and P. Minnett (2003), Observations of large greenhouse effects for anthropogenic aerosols, Geophys. Res. Lett. 30, 12, 1654–1657.CrossRefGoogle Scholar
  85. Wagner, F., and A.M. Silva (2008), Some considerations about Angström exponent distributions, Atmos. Chem. Phys. 8, 3, 481–489.CrossRefGoogle Scholar
  86. Wandinger, U., and A. Ansmann (2002), Experimental determination of the lidar overlap profile with Raman lidar, Appl. Opt. 41, 3, 511–514, DOI: 10.1364/AO.41.000511.CrossRefGoogle Scholar
  87. Wang, X., A. Boselli, L. D’Avino, G. Pisani, N. Spinelli, A. Amodeo, A. Chaikovsky, M. Wiegner, S. Nickovic, A. Papayannis, M.R. Perrone, V. Rizi, L. Sauvage, and A. Stohl (2008), Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001–2002, Atmos. Environ. 42, 5, 893–905, DOI: 10.1016/j.atmosenv.2007.10.020.CrossRefGoogle Scholar
  88. Wang, Z., H.H. Zhang, X. Jing, and X. Wei (2013), Effect of non-spherical dust aerosol on its direct radiative forcing, Atmos. Res. 120, 112–126, DOI: 10.1016/j.atmosres.2012.08.006.CrossRefGoogle Scholar
  89. ei]Weitkamp, C. (ed.) (2005), Lidar: Range-resolved Optical Remote Sensing of the Atmosphere, Springer, New York.CrossRefGoogle Scholar
  90. Westphal, D.L., O.B. Toon, and T.N. Carlson (1988), A case study of mobilization and transport of Saharan dust, J. Atmos. Sci. 45, 15, 2145–2175, DOI: 10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2.CrossRefGoogle Scholar
  91. Wiegner, M., and A. Geiß (2012), Aerosol profiling with the Jenoptik ceilometer CHM15kx, Atmos. Meas. Tech. 5, 8, 1953–1964, DOI: 10.5194/amt-5-1953-2012.CrossRefGoogle Scholar
  92. Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D8, D08215, DOI: 10.1029/2006JD007779.CrossRefGoogle Scholar
  93. Wong, M.S., M.I. Shahzad, J.E. Nichol, K.H. Lee, and P.W. Chan (2013), Validation of MODIS, MISR, OMI, and CALIPSO aerosol optical thickness using ground-based sunphotometers in Hong Kong, Int. J. Remote Sens. 34, 3, 897–918, DOI: 10.1080/01431161.2012.720739.CrossRefGoogle Scholar
  94. Zawadzka, O., K. Markowicz, A. Pietruczuk, T. Zielinski, and J. Jaroslawski (2013), Impact of urban pollution emitted in Warsaw on aerosol properties, Atmos. Environ. 69, 15–28, DOI: 10.1016/j.atmosenv.2012.11.065.CrossRefGoogle Scholar
  95. Zhang, J., J.S. Reid, D.L. Westphal, N.L. Baker, and E.J. Hyer (2008), A system for operational aerosol optical depth data assimilation over global oceans, J. Geophys. Res. 113, D10, D10208, DOI: 10.1029/2007JD009065.CrossRefGoogle Scholar

Copyright information

© Chilinski et al. 2016

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license,

Authors and Affiliations

  • Michał T. Chilinski
    • 1
    • 2
    • 5
  • Krzysztof M. Markowicz
    • 1
  • Olga Zawadzka
    • 1
    • 2
  • Iwona S. Stachlewska
    • 1
  • Wojciech Kumala
    • 1
  • Tomasz Petelski
    • 3
  • Przemysław Makuch
    • 3
  • Douglas L. Westphal
    • 4
  • Bogdan Zagajewski
    • 5
  1. 1.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.College of Inter-Faculty Individual Studies in Mathematics and Natural SciencesWarsawPoland
  3. 3.Institute of OceanologyPolish Academy of SciencesSopotPoland
  4. 4.Marine Meteorology DivisionNaval Research LaboratoryMonterey, CAUSA
  5. 5.Department of Geoinformatics and Remote Sensing, Faculty of Geography and Regional StudiesUniversity of WarsawWarsawPoland

Personalised recommendations