Skip to main content

Modelling and Observation of Mineral Dust Optical Properties over Central Europe

Abstract

This paper is focused on Saharan dust transport to Central Europe/Poland; we compare properties of atmospheric Saharan dust using data from NAAPS, MACC, AERONET as well as observations obtained during HyMountEcos campaign in June 2012. Ten years of dust climatology shows that long-range transport of Saharan dust to Central Europe is mostly during spring and summer. HYSPLIT back-trajectories indicate airmass transport mainly in November, but it does not agree with modeled maxima of dust optical depth. NAAPS model shows maximum of dust optical depth (~0.04–0.05, 550 nm) in April–May, but the MACC modeled peak is broader (~0.04). During occurrence of mineral dust over Central-Europe for 14% (NAAPS) / 12% (MACC) of days dust optical depths are above 0.05 and during 4% (NAAPS) / 2.5% (MACC) of days dust optical depths exceed 0.1. The HyMountEcos campaign took place in June–July 2012 in the mountainous region of Karkonosze. The analysis includes remote sensing data from lidars, sunphotometers, and numerical simulations from NAAPS, MACC, DREAM8b models. Comparison of simulations with observations demonstrates the ability of models to reasonably reproduce aerosol vertical distributions and their temporal variability. However, significant differences between simulated and measured AODs were found. The best agreement was achieved for MACC model.

References

  • AERONET (2002–2012), AERONET climatology, level 2.0 — quality assured data: Belsk, Aerosol Robotic Network, available from: http://aeronet.gsfc.nasa.gov/new_web/V2/climo_new/Belsk_500.html.

    Google Scholar 

  • Alpert, P., and B. Ziv (1989), The Sharav cyclone: observations and some theoretical considerations, J. Geophys. Res. 94, D15, 18495–18514, DOI: 10.1029/JD094iD15p18495.

    Article  Google Scholar 

  • Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer (1976), A Land Use and Land Cover Classification System for Use with Remote Sensor Data, U.S. Geol. Surv. Prof. Paper, Vol. 964, 28 pp.

  • Ansmann, A., J. Bösenberg, A. Chaikovsky, A. Comerón, S. Eckhardt, R. Eixmann, V. Freudenthaler, P. Ginoux, L. Komguem, H. Linné, Á.L. Márquez, V. Matthias, I. Mattis, V. Mitev, D. Müller, S. Music, S. Nickovic, J. Pelon, L. Sauvage, P. Sobolewsky, M.K. Srivastava, A. Stohl, O. Torres, G. Vaughan, U. Wandinger, and M. Wiegner (2003), Long-range transport of Saharan dust to northern Europe: The 11–16 October 2001 outbreak observed with EARLINET, J. Geophys. Res. 108, D24, 4783, DOI: 10.1029/2003JD003757.

    Article  Google Scholar 

  • Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys. 7, 81–95, DOI: 10.5194/acp-7-81-2007.

    Article  Google Scholar 

  • Bègue, N., P. Tulet, J.-P. Chaboureau, G. Roberts, L. Gomes, and M. Mallet (2012), Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging, J. Geophys. Res. 117, D17, D17201, DOI: 10.1029/2012JD017611.

    Article  Google Scholar 

  • Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher (2013), Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys. 13, 4, 2045–2062, DOI: 10.5194/acp-13-2045-2013.

    Article  Google Scholar 

  • Benedetti, A., J.-J. Morcrette, O. Boucher, A. Dethof, R.J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones, J.W. Kaiser, S. Kinne, A. Mangold, M. Razinger, A.J. Simmons, and M. Suttie (2009), Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J Geophys. Res. 114, D13, D13205, DOI: 10.1029/2008JD011115.

    Article  Google Scholar 

  • Brooks, N., and M. Legrand (2000), Dust variability over northern Africa and rainfall in the Sahel. In: S.J. McLarsen and D. Kiiverton (eds.), Linking Land Surface Change to Climate Change, Kluwer.

    Google Scholar 

  • Chand, D., R. Wood, T.L. Anderson, S.K. Satheesh, and R.J. Charlson (2009), Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nat. Geosci. 2, 3, 181–184, DOI: 10.1038/NGEO437.

    Article  Google Scholar 

  • Chen, L., G. Shi, S. Qin, S. Yang, and P. Zhang (2011), Direct radiative forcing of anthropogenic aerosols over oceans from satellite observations, Adv. Atmos. Sci. 28, 4, 973–984, DOI: 10.1007/s00376-010-9210-4.

    Article  Google Scholar 

  • Choobari, O.A., P. Zawar-Reza, and A. Sturman (2014), The global distribution of mineral dust and its impacts on the climate system: A review, Atmos. Res. 138, 152–165, DOI: 10.1016/j.atmosres.2013.11.007.

    Article  Google Scholar 

  • Christensen, J.H. (1997), The Danish Eulerian Hemispheric Model — a three-dimensional air pollution model used for the Arctic, Atmos. Environ. 31, 24, 4169–4191, DOI: 10.1016/S1352-2310(97)00264-1

    Article  Google Scholar 

  • Di Sarra, A., T. Di Iorio, and M. Cacciani (2001), Saharan dust profiles measured by lidar at Lampedusa, J. Geophys. Res. Atmos. 106, D10, 10335–10347.

    Article  Google Scholar 

  • Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY, NOAA Air Resources Laboratory, Silver Spring, MD, available from: http://ready.arl.noaa.gov/HYSPLIT.php.

    Google Scholar 

  • Duce, R.A. (1995), Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In: R. Charlson and J. Heintzenberg (eds.), Aerosol Forcing of Climate, Wiley, New York, 43–72.

    Google Scholar 

  • Engelstaedter, S., and R. Washington (2007), Atmospheric controls on the annual cycle of North African dust, J. Geophys. Res. Atmos. 112, D3, D03103, DOI: 10.1029/2006JD007195.

    Article  Google Scholar 

  • Engelstaedter, S., I. Tegen, and R. Washington (2006), North African dust emissions and transport, Earth Sci. Rev. 79, 1–2, 73–100, DOI: 10.1016/j.earscirev.2006.06.004.

    Article  Google Scholar 

  • Eresmaa, N., A. Karppinen, S.M. Joffre, J. Rasanen, and H. Talvitie (2006), Mixing height determination by ceilometers, Atmos. Chem. Phys. 6, 1485–1493.

    Article  Google Scholar 

  • Fernald, F.G. (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23, 5, 652–653.

    Article  Google Scholar 

  • Flentje, H., B. Heese, J. Reichardt, and W. Thomas (2010), Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. 3, 3643–3673, DOI: 10.5194/amtd-3-3643-2010.

    Article  Google Scholar 

  • Formenti, P., J.L. Rajot, K. Desboeufs, S. Caquineau, S. Chevaillier, S. Nava, A. Gaudichet, E. Journet, S. Triquet, S. Alfaro, M. Chiari, J. Haywood, H. Coe, and E. Highwood (2008), Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns, J. Geophys. Res. Atmos. 113, D20, D00C13, DOI: 10.1029/2008JD009903.

    Google Scholar 

  • Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, M. Garhammer, and M. Seefeldner (2009), Depolarization-ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61, 1, 165–179, DOI: 10.1111/j.1600-0889.2008.00396.x.

    Article  Google Scholar 

  • Frey, S., K. Poenitz, G. Teschke, and H. Wille (2010), Detection of aerosol layers with ceilometer and the recognition of the mixed layer depth. In: Proc. Int. Symp. for Advancement of Boundary Layer Remote (ISARS), 3646–3647.

    Google Scholar 

  • Ginoux, P., M. Chin, I. Tegen, J.M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin (2001), Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res. 106, D17, 20255–20273, DOI: 10.1029/2000JD000053.

    Article  Google Scholar 

  • Goudie, A.S., and N.J. Middleton (2001), Saharan dust storms: nature and consequences, Earth Sci. Rev. 56, 1–4, 179–204, DOI: 10.1016/S0012-8252(01)00067-8.

    Article  Google Scholar 

  • Gross, S., M. Tesche, V. Freudenthaler, C. Toledano, M. Wiegner, A. Ansmann, D. Althausen, and M. Seefeldner (2011), Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2, Tellus B 63, 4, 706–724, DOI: 10.1111/j.1600-0889.2011.00556.x.

    Article  Google Scholar 

  • Guerrero-Rascado, L., F.J. Olmo, I. Avilés-Rodríguez, F. Navas-Guzmán, D. Pérez-Ramírez, H. Lyamani, and L. Alados Arboledas (2009), Extreme Saharan dust event over the southern Iberian Peninsula in September 2007: active and passive remote sensing from surface and satellite, Atmos. Chem. Phys. 9, 21, 8453–8469.

    Article  Google Scholar 

  • Guerrero-Rascado, J.L., M.J. Costa, D. Bortoli, A.M. Silva, H. Lyamani, and L. Alados-Arboledas (2010), Infrared lidar overlap function: an experimental determination, Opt. Express 18, 19, 20350–20359, DOI: 10.1364/OE.18.020350.

    Article  Google Scholar 

  • Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometerlidar inter-comparision: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3, 3907–3924, DOI: 10.5194/amtd-3-3907-2010.

    Article  Google Scholar 

  • Heintzenberg, J. (2009), The SAMUM-1 experiment over Southern Morocco: overview and introduction, Tellus B 61, 1, 2–11, DOI: 10.1111/j.1600-0889.2008.00403.x.

    Article  Google Scholar 

  • Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc. 79, 5, 831–844, DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    Article  Google Scholar 

  • Hogan, T.F., and L.R. Brody (1993), Sensitivity studies of the Navy’s global forecast model parameterizations and evaluation of improvements to NOGAPS, Mon. Weather Rev. 121, 8, 2373–2395, DOI: 10.1175/1520-0493(1993)121<2373:SSOTNG>2.0.CO;2.

    Article  Google Scholar 

  • Hogan, T.F., and T.E. Rosmond (1991), The description of the Navy operational global atmospheric prediction system, Mon. Weather Rev. 119, 8, 1786–1815, DOI: 10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.

    Article  Google Scholar 

  • Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998), AERONET — A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66, 1, 1–16, DOI: 10.1016/S0034-4257(98)00031-5.

    Article  Google Scholar 

  • Huang, L., J.H. Jiang, J.L. Tackett, H. Su, and R. Fu (2013), Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations, J. Geophys. Res. Atmos. 118, 10, 4572–4596, DOI: 10.1002/jgrd.50407.

    Article  Google Scholar 

  • IPCC (2014), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)), Cambridge University Press, Cambridge, 1535 pp.

    Google Scholar 

  • Israelevich, P.L., E. Ganor, Z. Levin, J.H. Joseph (2003), Annual variations of physical properties of desert dust over Israel, J. Geophys. Res. 108, D13, 4381, DOI: 10.1029/2002JD003163.

    Article  Google Scholar 

  • Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009), Evolution of organic aerosols in the atmosphere, Science 326, 5959, 1525–1529, DOI: 10.1126/science.1180353.

    Article  Google Scholar 

  • Kandler, K., L. Schuetz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R.P. Knippertz, K. Lieke, A. Masling, A. Petzold, A. Schladitz, B. Weinzier, A. Wiedensohler, S. Zorn, and S. Weinbruch (2009), Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B 61, 1, 32–50, DOI: 10.1111/j.1600-0889.2008.00385.x.

    Article  Google Scholar 

  • Klett, J.D. (1985), Lidar inversions with variable backscatter/extinction values, Appl. Opt. 24, 11, 211–220, DOI: 10.1364/AO.24.001638.

    Article  Google Scholar 

  • Landulfo, E., A. Papayannis, P. Artaxo, A.D.A. Castanho, A.Z. de Freitas, R.F. Souza, N.D. Vieira Junior, M.P.M.P. Jorge, O.R. Sánchez-Ccoyllo, and D.S. Moreira (2003), Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season, Atmos. Chem. Phys. 3, 5, 1523–1539, DOI: 10.5194/acp-3-1523-2003.

    Article  Google Scholar 

  • Lopes, F.J.S., E. Landulfo, and M.A. Vaughan (2013), Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil, Atmos. Meas. Tech. 6, 11, 3281–3299, DOI: 10.5194/amt-6-3281-2013.

    Article  Google Scholar 

  • Maciszewska, A., K. Markowicz, and M. Witek (2010), Multi year analysis of the aerosol optical thickness over Europe, Acta Geophys. 58, 6, 1147–1163, DOI: 10.2478/s11600-010-0034-5.

    Article  Google Scholar 

  • Marécal, V., V.H. Peuch, C. Andersson, S. Andersson, J. Arteta et al. (2015), A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geosci. Model Dev. 8, 9, 2777–2813, DOI: 10.5194/gmd-8-2777-2015.

    Article  Google Scholar 

  • Markowicz, K.M., P.J. Flatau, A.M. Vogelmann, P.K. Quinn, and D. Bates (2003), Modeling and observations of infrared radiative forcing during ACE-Asia, Quart. J. Roy. Meteorol. Soc. 129, 594, 2927–2947.

    Article  Google Scholar 

  • Markowicz, K.M., P.J. Flatau, A.E. Kardas, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Techn. 25, 6, 928–944, DOI: 10.1175/2007JTECHA1016.1.

    Article  Google Scholar 

  • Markowicz, K.M., T. Zielinski, S. Blindheim, M. Gausa, A.K. Jagodnicka, A.E. Kardas, W. Kumala, Sz.P. Malinowski, M. Posyniak, T. Petelski, and T. Stacewicz (2012), Study of vertical structure of aerosol optical properties by sun photometers and ceilometer during macron campaign in 2007, Acta Geophys. 60, 5, 1308–1337, DOI: 10.2478/s11600-011-0056-7.

    Article  Google Scholar 

  • Marsham, J.H., D.J. Parker, C.M. Grams, C.M. Taylor, and J.M. Haywood (2008), Uplift of Saharan dust south of the intertropical discontinuity, J. Geophys. Res. Atmos. 113, D21, D21102.

    Article  Google Scholar 

  • Marsham, J.H., M. Hobby, C.J.T. Allen, J.R., Banks, M. Bart et al. (2013), Meteorology and dust in the central Sahara: Observations from Fennec supersite-1 during the June 2011 Intensive Observation Period, J. Geophys. Res. 118, 10, 4069–4089, DOI: 10.1002/jgrd.50211.

    Google Scholar 

  • Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Ocean. Technol. 2, 305–318.

    Article  Google Scholar 

  • McConnell, C.L., E.J. Highwood, H. Coe, P. Formenti, B. Anderson et al. (2008), Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment, J. Geophys. Res. 113, D14, DOI: 10.1029/2007JD009606.

    Article  Google Scholar 

  • McKendry, I.G., D. van der Kamp, K.B. Strawbridge, A. Christen, and B. Crawford (2009), Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar, Atmos. Environ. 43, 36, 5847–5852, DOI: 10.1016/j.atmosenv.2009.07.063.

    Article  Google Scholar 

  • Mona, L., Z. Liu, D. Müller, A. Omar, A. Papayannis, G. Pappalardo, N. Sugimoto, and M. Vaughan (2012), Lidar measurements for desert dust characterization: an overview, Adv. Meteorol. 2012, 356265, DOI: 10.1155/2012/356265.

    Article  Google Scholar 

  • Mona, L., N. Papagiannopoulos, S. Basart, J. Baldasano, and I. Binietoglou et al. (2014), EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy, Atmos. Chem. Phys. 14, 16, 8781–8793, DOI: 10.5194/acp-14-8781-2014.

    Article  Google Scholar 

  • Morcrette, J.-J. et al. (2009), Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: forward modeling, J. Geophys. Res. 114, D06206, DOI: 10.1029/2008JD011235.

    Article  Google Scholar 

  • Morys, M., Mims III, F.M. Hagerup, S. Anderson, S.E. Baker, A. Kia, and J. Walkup (2001), Design calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106, D13, 14573–14582, DOI: 10.1029/2001JD900103.

    Article  Google Scholar 

  • Münkel, C., S. Emeis, W.J. Mueller, and K.P. Schaefer (2004), Aerosol concentration measurements with a lidar ceilometer: Results of a one year measuring campaign. In: K. Schaefer et al. (eds.), Remote Sensing of Clouds and the Atmosphere VIII, International Society for Optical Engineering (SPIE Proc. 5235), 486–496.

    Article  Google Scholar 

  • Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou (2001), A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res. Atmos. 106, D16, 18113–118129, DOI: 10.1029/2000JD900794.

    Article  Google Scholar 

  • O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Ocean. Technol. 21, 5, 777–786, DOI: 10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2.

    Article  Google Scholar 

  • Osborne, S.R., B.T. Johnson, J.M. Haywood, A.J. Baran, M.A.J. Harrison et al. (2008), Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment, J. Geophys. Res. 113, D00C03, DOI: 10.1029/2007JD009551.

    Article  Google Scholar 

  • Papayannis, A., D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A.D.A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski (2005), Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project, Atmos. Chem. Phys. 5, 8, 2065–2079.

    Article  Google Scholar 

  • Papayannis, A., H.Q. Zhang, V. Amiridis, H.B. Ju, G. Chourdakis, G. Georgoussis, C. Pérez, H.B. Chen, P. Goloub, R.E. Mamouri, S. Kazadzis, D. Paronis, G. Tsaknakis, and J.M. Baldasano (2007), Extraordinary dust event over Beijing, China, during April 2006: Lidar, Sun photometric, satellite observations and model validation, J. Geophys. Res. 34, 7, L07806, DOI: 10.1029/2006GL029125.

    Google Scholar 

  • Papayannis, A., V. Amiridis, L. Mona, G. Tsaknakis, D. Balis, J. Bösenberg, A. Chaikovski, F. De Tomasi, I. Grigorov, I. Mattis, V. Mitev, D. Müller, S. Nickovic, C. Pérez, A. Pietruczuk, G. Pisani, F. Ravetta, V. Rizi, M. Sicard, T. Trickl, M. Wiegner, and M. Gerding (2008), Systematic lidar observations of aerosol optical properties during Saharan dust intrusions over Europe, in the frame of EARLINET (2000–2002): Statistical analysis and results, J. Geophys. Res. 113, D10, D10204, DOI: 10.1029/2007JD009028.

    Article  Google Scholar 

  • Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo et al. (2013), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys. 13, 8, 4429–4450, DOI: 10.5194/acp-13-4429-2013.

    Article  Google Scholar 

  • Pavese, G., M. Calvello, F. Esposito, L. Leone, and R. Restieri (2012), Effects of Saharan dust advection on atmospheric aerosol properties in the West-Mediterranean area, Adv. Meteorol. 2012, 730579, DOI: 10.1155/2012/730579.

    Article  Google Scholar 

  • Perez, C., S. Nickovic, G. Pejanovic, J. M. Baldasano, and E. Ozsoy (2006a), Interactive dust-radiation modeling: A step to improve weather forecasts, J. Geophys. Res. 111, D16, D16206, DOI: 10.1029/2005JD006717.

    Article  Google Scholar 

  • Perez, C., S. Nickovic, J.M. Baldasano, M. Sicard, F. Rocadenbosch, and V.E. Cachorro (2006b), A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, J. Geophys. Res. 111, D15, D15214, DOI: 10.1029/2005JD006579.

    Article  Google Scholar 

  • Pisani, G., A. Boselli, N. Spinelli, and X. Wang (2011), Characterization of Saharan dust layers over Naples (Italy) during 2000–2003 EARLINET project, Atmos. Res. 102, 3, 286–299, DOI: 10.1016/j.atmosres.2011.07.012.

    Article  Google Scholar 

  • Preißler, J., F. Wagner, S.N. Pereira, and J.L. Guerrero-Rascado (2011), Multi-instrumental observation of an exceptionally strong Saharan dust outbreak over Portugal, J. Geophys. Res. 116, D24, D24204, DOI: 10.1029/2011JD016527.

    Article  Google Scholar 

  • Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill (2002), Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (toms) absorbing aerosol product, Rev. Geophys. 40, 1, 2-1–2-31, DOI: 10.1029/2000RG000095.

    Google Scholar 

  • Sasano, Y., E.V. Browell, and S. Ismail (1985), Error caused by Rusing a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24, 22, 3929–3932, DOI: 10.1364/AO.24.003929.

    Article  Google Scholar 

  • Schutgens, N., M. Nakata, and T. Nakajima (2012), Estimating aerosol emissions by assimilating remote sensing observations into a global transport model, Remote Sens. 4, 11, 3528–3543, DOI: 10.3390/rs4113528.

    Article  Google Scholar 

  • Shifrin, K.S. (1995), Simple relationships for the Angstrom parameter of disperse systems, Appl. Opt. 34, 21, 4480–4485, DOI: 10.1364/AO.34.004480.

    Article  Google Scholar 

  • Sinha, P., D. Kaskaoutis, R. Manchanda, and S. Sreenivasan (2012), Characteristics of aerosols over Hyderabad in southern Peninsular India: synergy in the classification techniques, Ann. Geophys. 30, 9, 1393–1410, DOI: 10.5194/angeo-30-1393-2012.

    Article  Google Scholar 

  • Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloud screening and quality control algorithms for the AERONET database, Rem. Sens. Env. 73, 3, 337–349, DOI: 10.1016/S0034-4257(00)00109-7.

    Article  Google Scholar 

  • Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10, 6, 2813–2824, DOI: 10.5194/acp-10-2813-2010.

    Article  Google Scholar 

  • Stachlewska, I.S., K.M. Markowicz, and M. Piądłowski (2010), On forward Klett’s inversion of ceilometer signals. In: 25th ILRC International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia.

    Google Scholar 

  • Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60, 5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.

    Article  Google Scholar 

  • Sundström, A.-M., T. Nousiainen, and T. Petäjä (2009), On the quantitative lowlevel aerosol measurements using ceilometer-type lidar, J. Atmos. Ocean. Technol. 26, 11, 2340–2352, DOI: 10.1175/2009JTECHA1252.1.

    Article  Google Scholar 

  • Tegen, I., K. Schepanski, and B Heinold (2013), Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations, Atmos. Chem. Phys. 13, 5, 2381–2390, DOI: 10.5194/acp-13-2381-2013.

    Article  Google Scholar 

  • Tesche, M., A. Ansmann, D. Mueller, D. Althausen, I. Mattis et al. (2009), Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM, Tellus B 61, 1, 144–164, DOI: 10.1111/j.1600-0889.2008.00390.x.

    Article  Google Scholar 

  • Varga, G., J. Kovács, and G. Újvári (2013), Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979–2011, Global Planet Change 100, 333–342, DOI: 10.1016/j.gloplacha.2012. 11.007.

    Article  Google Scholar 

  • Vogelmann, A., P. Flatau, M. Szczodrak, K. Markowicz, and P. Minnett (2003), Observations of large greenhouse effects for anthropogenic aerosols, Geophys. Res. Lett. 30, 12, 1654–1657.

    Article  Google Scholar 

  • Wagner, F., and A.M. Silva (2008), Some considerations about Angström exponent distributions, Atmos. Chem. Phys. 8, 3, 481–489.

    Article  Google Scholar 

  • Wandinger, U., and A. Ansmann (2002), Experimental determination of the lidar overlap profile with Raman lidar, Appl. Opt. 41, 3, 511–514, DOI: 10.1364/AO.41.000511.

    Article  Google Scholar 

  • Wang, X., A. Boselli, L. D’Avino, G. Pisani, N. Spinelli, A. Amodeo, A. Chaikovsky, M. Wiegner, S. Nickovic, A. Papayannis, M.R. Perrone, V. Rizi, L. Sauvage, and A. Stohl (2008), Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001–2002, Atmos. Environ. 42, 5, 893–905, DOI: 10.1016/j.atmosenv.2007.10.020.

    Article  Google Scholar 

  • Wang, Z., H.H. Zhang, X. Jing, and X. Wei (2013), Effect of non-spherical dust aerosol on its direct radiative forcing, Atmos. Res. 120, 112–126, DOI: 10.1016/j.atmosres.2012.08.006.

    Article  Google Scholar 

  • ei]Weitkamp, C. (ed.) (2005), Lidar: Range-resolved Optical Remote Sensing of the Atmosphere, Springer, New York.

    Book  Google Scholar 

  • Westphal, D.L., O.B. Toon, and T.N. Carlson (1988), A case study of mobilization and transport of Saharan dust, J. Atmos. Sci. 45, 15, 2145–2175, DOI: 10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2.

    Article  Google Scholar 

  • Wiegner, M., and A. Geiß (2012), Aerosol profiling with the Jenoptik ceilometer CHM15kx, Atmos. Meas. Tech. 5, 8, 1953–1964, DOI: 10.5194/amt-5-1953-2012.

    Article  Google Scholar 

  • Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D8, D08215, DOI: 10.1029/2006JD007779.

    Article  Google Scholar 

  • Wong, M.S., M.I. Shahzad, J.E. Nichol, K.H. Lee, and P.W. Chan (2013), Validation of MODIS, MISR, OMI, and CALIPSO aerosol optical thickness using ground-based sunphotometers in Hong Kong, Int. J. Remote Sens. 34, 3, 897–918, DOI: 10.1080/01431161.2012.720739.

    Article  Google Scholar 

  • Zawadzka, O., K. Markowicz, A. Pietruczuk, T. Zielinski, and J. Jaroslawski (2013), Impact of urban pollution emitted in Warsaw on aerosol properties, Atmos. Environ. 69, 15–28, DOI: 10.1016/j.atmosenv.2012.11.065.

    Article  Google Scholar 

  • Zhang, J., J.S. Reid, D.L. Westphal, N.L. Baker, and E.J. Hyer (2008), A system for operational aerosol optical depth data assimilation over global oceans, J. Geophys. Res. 113, D10, D10208, DOI: 10.1029/2007JD009065.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license, http://creativecommons.org/licenses/by-nc-nd/3.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chilinski, M.T., Markowicz, K.M., Zawadzka, O. et al. Modelling and Observation of Mineral Dust Optical Properties over Central Europe. Acta Geophys. 64, 2550–2590 (2016). https://doi.org/10.1515/acgeo-2016-0069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/acgeo-2016-0069

Key words

  • aerosol
  • mineral dust
  • MACC
  • NAAPS
  • DREAM
  • aerosol transport model
  • remote sensing