Skip to main content

Advertisement

SpringerLink
Local Recovery of Sub-Crustal Stress Due to Mantle Convection from Satellite-to-Satellite Tracking Data
Download PDF
Download PDF
  • Open Access
  • Published: 02 December 2016

Local Recovery of Sub-Crustal Stress Due to Mantle Convection from Satellite-to-Satellite Tracking Data

  • Michal Šprlák1 &
  • Mehdi Eshagh2 

Acta Geophysica volume 64, pages 904–929 (2016)Cite this article

  • 253 Accesses

  • 2 Citations

  • Metrics details

Abstract

Two integral transformations between the stress function, differentiation of which gives the meridian and prime vertical components of the sub-crustal stress due to mantle convection, and the satellite-to-satellite tracking (SST) data are presented in this article. In the first one, the SST data are the disturbing potential differences between twin-satellites and in the second one the line-of-sight (LOS) gravity disturbances. It is shown that the corresponding integral kernels are well-behaving and therefore suitable for inversion and recovery of the stress function from the SST data. Recovery of the stress function and the stress components is also tested in numerical experiments using simulated SST data. Numerical studies over the Himalayas show that inverting the disturbing potential differences leads to a smoother stress function than from inverting LOS gravity disturbances. Application of the presented integral formulae allows for recovery of the stress from the satellite mission GRACE and its planned successor.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Arabelos, D.N., and D. Tsoulis (2013), The exploitation of state of the art digital terrain databases and combined or satellite-only Earth gravity models for the estimation of the crust-mantle interface over oceanic regions, Geophys. J. Int. 193, 3, 1343–1352, DOI: 10.1093/gji/ggt081.

    Article  Google Scholar 

  • Block, A.E., R.E. Bell, and M. Studinger (2009), Antarctic crustal thickness from satellite gravity: Implications for the Transantarctic and Gamburtsev Subglacial Mountains, Earth Planet. Sci. Lett. 288, 1-2, 194–203, DOI: 10.1016/j.epsl.2009.09.022.

    Article  Google Scholar 

  • Bouman, J. (1998), Quality of regularization methods, DEOS Report no. 98.2, Delft University Press, Delft, The Netherlands.

    Google Scholar 

  • Braitenberg, C., and J. Ebbing (2009a), New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data, J. Geophys. Res. Solid Earth 114, B06402, DOI: 10.1029/2008JB005799.

  • Braitenberg, C., and J. Ebbing (2009b), The GRACE-satellite gravity and geoid fields in analysing large-scale, cratonic or intracratonic basins, Geophys. Prospect. 57, 4, 559–571, DOI: 10.1111/j.1365-2478.2009.00793.x.

    Article  Google Scholar 

  • Case, K., G. Kruizinga, and S.-C. Wu (2010), GRACE level 1B data product user handbook, Version 1.3, JPL D22027, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA.

    Google Scholar 

  • Chen, J.L., C.R. Wilson, B.D. Tapley, and S. Grand (2007), GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake, Geophys. Res. Lett. 34, 13, L13302, DOI: 10.1029/2007GL030356.

    Google Scholar 

  • Choi, S., C.W. Oh, and H. Luehr (2006), Tectonic relation between northeastern China and the Korean peninsula revealed by interpretation of GRACE satellite gravity data, Gondwana Res. 9, 1–2, 62–67, DOI: 10.1016/j.gr.2005. 06.002.

    Article  Google Scholar 

  • Dai, C., C.K. Shum, R. Wang, L. Wang, J. Guo, K. Shang, and B. Tapley (2014), Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes, Geophys. Res. Lett. 41, 6, 1929–1936, DOI:10.1002/2013GL059178.

    Article  Google Scholar 

  • ESA (1999), Gravity field and steady-state ocean circulation mission, Report for mission selection of the four candidate earth explorer missions, ESA SP- 1233(1), European Space Agency, ESA Publications Division, Noordwijk, The Netherlands.

    Google Scholar 

  • Eshagh, M. (2011a), Sequential Tikhonov regularization: an alternative way for inverting satellite gradiometric data, Z. Vermessungs. 136, 2, 113–121.

    Google Scholar 

  • Eshagh, M. (2011b), The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data, Adv. Space Res. 47, 7, 1238–1247, DOI: 10.1016/j.asr.2010.11.035.

    Article  Google Scholar 

  • Eshagh, M. (2014), From satellite gradiometry data to sub-crustal stress due to mantle convection, Pure Appl. Geophys. 171, 9, 2391–2406, DOI: 10.1007/ s00024-014-0847-2.

    Article  Google Scholar 

  • Eshagh, M. (2015), On the relation between Moho and sub-crustal stress due to mantle convection, J. Geophys. Eng. 12, 1, 1–11, DOI: 10.1088/1742-2132/12/1/1.

    Article  Google Scholar 

  • Eshagh, M. (2016), Integral approaches to determine sub-crustal stress from terrestrial gravimetric data, Pure Appl. Geophys. 173, 3, 805–825, DOI: 10.1007/ s00024-015-1107-9.

    Article  Google Scholar 

  • Eshagh, M., and M. Romeshkani (2015), Determination of sub-lithospheric stress due to mantle convection using GOCE gradiometric data over Iran, J Appl. Geophys. 122, 11–17, DOI: 10.1016/j.jappgeo.2015.08.001.

    Article  Google Scholar 

  • Eshagh, M., and R. Tenzer (2015), Sub-crustal stress determined using gravity and crust structure models, Computat. Geosci. 19, 1, 115–125, DOI: 10.1007/ s10596-014-9460-9.

    Article  Google Scholar 

  • Fischell, R.E., and V.L. Pisacane (1978), A drag-free Lo-Lo satellite system for improved gravity field measurements. In: I. Mueller (ed.), Proc. Ninth Geodesy/ Solid Earth and Ocean Physics (GEOP) Int. Symp. “Applications of Geodesy to Geodynamics”, 2-5 October 1978, Columbus Ohio State University, USA, Report No. 280, 213–219.

    Google Scholar 

  • Fu, R.S. (1986), A numerical study of the effects of boundary conditions on mantle convection models constrained to fit the low degree geoid coefficients, Phys. Earth Planet. Int. 44, 3, 257–263, DOI: 10.1016/0031-9201(86) 90074-9.

    Article  Google Scholar 

  • Fu, R.S. (1990), The Earth’s geoid anomalies and the physical mathematical model of the mantle convection, Chinese J. Geophys. 33 (Suppl. II), 457–468 (in Chinese).

    Google Scholar 

  • Hajela, D.P. (1974), Improved procedures for the recovery of 5° mean gravity anomalies from ATS-6/GEOS-3 satellite-to-satellite range-rate observations, Report No. 276, Department of Geodetic Science, Ohio State University, Columbus, USA.

    Google Scholar 

  • Han, S.-C., J. Sauber, S.B. Luthcke, C. Ji, and F.F. Pollitz (2008), Implications of postseismic gravity change following the great 2004 Sumatra—Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data, J. Geophys. Res. 113, B11, B11413, DOI:10.1029/ 2008JB005705.

    Google Scholar 

  • Hansen, P.C. (1998), Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia, 243 pp.

    Book  Google Scholar 

  • Hansen, P.C. (2007), Regularization tools, version 4.0 for Matlab 7.3, Numer. Algorithms 46, 2, 189–194, DOI: 10.1007/s11075-007-9136-9.

    Article  Google Scholar 

  • Hofmann-Wellenhof, B., and H. Moritz (2005), Physical Geodesy, 2nd ed., Springer, Wien, 403 pp.

    Google Scholar 

  • Huang, P.H., and R.S. Fu (1982), The mantle convection pattern and force source mechanism of recent tectonic movement in China, Phys. Earth Planet. Int. 28, 3, 261–268, DOI: 10.1016/0031-9201(82)90007-3.

    Article  Google Scholar 

  • Jekeli, C. (1999), The determination of gravitational potential differences from satellite-to-satellite tracking, Celest. Mech. Dyn. Astron. 75, 2, 85–101, DOI: 10.1023/A:1008313405488.

    Article  Google Scholar 

  • Kaban, M.K., and V. Trubitsyn (2012), Density structure of the mantle transition zone and the dynamic geoid, J. Geodyn. 59-60, 183–192, DOI: 10.1016/ j.jog.2012.02.007.

    Article  Google Scholar 

  • Kaban, M.K., M. Tesauro, and S. Cloetingh (2010), An integrated gravity model for Europe’s crust and upper mantle, Earth Planet. Sci. Lett. 296, 3–4, 195–209, DOI: 10.1016/j.epsl.2010.04.041.

    Article  Google Scholar 

  • Keller, W., and M.A. Sharifi (2005), Satellite gradiometry using a satellite pair, J. Geodesy 78, 9, 544–557, DOI: 10.1007/s00190-004-0426-x.

    Article  Google Scholar 

  • Kiamehr, R., and L.E. Sjöberg (2006), Impact of a precise geoid model in studying tectonic structures–A case study in Iran, J. Geodyn. 42, 1–3, 1–11, DOI: 10.1016/j.jog.2006.04.001.

    Article  Google Scholar 

  • Kiamehr, R., M. Eshagh, and L.E. Sjöberg (2008), Interpretation of general geophysical patterns in Iran based on GRACE gradient component analysis, Acta Geophys. 56, 2, 440–454, DOI: 10.2478/s11600-007-0050-2.

    Article  Google Scholar 

  • Köther, N., H.-J. Götze, B.D. Gutknecht, T. Jahr, G. Jentzsch, O.H. Lücke, R. Mahatsente, R. Sharma, and S. Zeumann (2012), The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? J. Geodyn. 59-60, 207–218, DOI: 10.1016/j.jog.2011.11.004.

    Article  Google Scholar 

  • Li, J., J. Chen, and Z. Zhang (2014), Seismologic applications of GRACE timevariable gravity measurements, Earthq. Sci. 27, 2, 229–245, DOI: 10.1007/ s11589-014-0072-1.

    Article  Google Scholar 

  • Liu, H.S. (1977), Convection pattern and stress system under the African plate, Phys. Earth Planet. Int. 15, 1, 60–68, DOI: 10.1016/0031-9201(77)90010-3.

    Article  Google Scholar 

  • Liu, H.S. (1978), Mantle convection pattern and subcrustal stress under Asia, Phys. Earth Planet. Int. 16, 3, 247–256, DOI: 10.1016/0031-9201(78)90018-3.

    Article  Google Scholar 

  • Liu, H.S. (1980a), Mantle convection and subcrustal stress under Australia, Mod. Geol. 7, 1, 29–36.

    Google Scholar 

  • Liu, H.S. (1980b), Mantle convection and subcrustal stress under United States, Mod. Geol. 7, 81–93.

    Google Scholar 

  • Liu, H.S., E.S. Chang, and G.H. Wyatt (1976), Small-scale mantle convection system and stress field under Pacific plate, Phys. Earth Planet. Int. 13, 3, 212–217, DOI: 10.1016/0031-9201(76)90095-9.

    Article  Google Scholar 

  • Matsuo, K., and K. Heki (2011), Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry, Geophys. Res. Lett. 38, 7, L00G12, DOI:10.1029/2011GL049018.

    Google Scholar 

  • McAdoo, D.C., S.L. Farrell, S.W. Laxon, H.J. Zwally, D. Yi, and A.L. Ridout (2008), Arctic Ocean gravity field derived from ICESat and ERS-2 altimetry: Tectonic implications, J. Geophys. Res. 113, B5, B05408, DOI:10.1029/2007JB005217.

    Google Scholar 

  • McKenzie, D.P. (1967), Some remarks on heat flow and gravity anomalies, J. Geophys. Res. 72, 24, 6261–6273, DOI:10.1029/JZ072i024p06261.

    Article  Google Scholar 

  • McNutt, M. (1980), Implication of regional gravity for state of stress in the Earth’s crust and upper mantle, J Geophys. Res. 85, B11, 6377–6396, DOI:10.1029/JB085iB11p06377.

    Article  Google Scholar 

  • Mikhailov, V., S. Tikhotsky, M. Diament, I. Panet, and V. Ballu (2004), Can tectonic processes be recovered from new gravity satellite data?, Earth Planet. Sci. Lett. 228, 3–4, 281–297, DOI: 10.1016/j.epsl.2004.09.035.

    Article  Google Scholar 

  • Mikhailov, V., V. Lyakhovsky, I. Panet, Y. van Dinther, M. Diament, T. Gerya, O. deViron, and E. Timoshkina (2013), Numerical modelling of postseismic rupture propagation after the Sumatra 26.12.2004 earthquake constrained by GRACE gravity data, Geophys. J. Int. 194, 1, 640–650, DOI:10.1093/gji/ggt145.

    Article  Google Scholar 

  • Moritz, H. (2000), Geodetic reference system 1980, J. Geodesy 74, 1, 128–133, DOI: 10.1007/s001900050278.

    Article  Google Scholar 

  • Panet, I., F. Pollitz, V. Mikhailov, M. Diament, P. Banerjee, and K. Grijalva (2010), Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra—Andaman earthquake, Geochem. Geophys. Geosyst. 11, 6, Q06008, DOI: 10.1029/2009GC002905.

    Google Scholar 

  • Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117, B4, B04406, DOI: 10.1029/2011JB008916.

    Google Scholar 

  • Pick, M. (1994), The geoid and tectonic forces. In: P. Vaníček and N.T. Christou (eds.), Geoid and its Geophysical Interpretations, CRC Press, Boca Raton, 239–253.

    Google Scholar 

  • Pick, M., and I. Charvátová-Jakubcová (1988), Modification of the Runcorn’s equations on the convection flows, Stud. Geophys. Geod. 32, 1, 47–53, DOI: 10.1007/BF01629000.

    Article  Google Scholar 

  • Pick, M., J. Pícha, and V. Vyskočil (1973), Theory of the Earth’s Gravity Field, Elsevier, Amsterdam, 538 pp.

    Google Scholar 

  • Reigber, C. (1989), Gravity field recovery from satellite tracking data. In: F. Sansó and R. Rummel (eds.), Theory of Satellite Geodesy and Gravity Field Determination, Lecture Notes in Earth Sciences, Vol. 25, Springer, Berlin Heidelberg, 197–234.

    Chapter  Google Scholar 

  • Reigber, C., H. Luehr, and P. Schwintzer (2002), CHAMP mission status, Adv. Space Res. 30, 2, 129–134, DOI: 10.1016/S0273-1177(02)00276-4.

    Article  Google Scholar 

  • Ricard, Y., L. Fleitout, and C. Froidevaux (1984), Geoid heights and lithospheric stresses for a dynamic Earth, Ann. Geophys. 2, 3, 267–286.

    Google Scholar 

  • Ricard, Y., F. Chambat, and C. Lithgow-Bertelloni (2006), Gravity observations and 3D structure of the Earth, C. R. Geosci. 338, 14-15, 992–1001, DOI: 10.1016/j.crte.2006.05.013.

    Article  Google Scholar 

  • Rummel, R. (1980), Geoid heights, geoid height differences, and mean gravity anomalies from ‘low-low’ satellite-to-satellite tracking–an error analysis, Report No. 306, Department of Geodetic Science, Ohio State University, Columbus, USA.

    Google Scholar 

  • Runcorn, S.K. (1964), Satellite gravity measurements and laminar viscous flow model of the Earth mantle, J. Geophys. Res. 69, 20, 4389–4394, DOI:10.1029/JZ069i020p04389.

    Article  Google Scholar 

  • Runcorn, S.K. (1967), Flow in the mantle inferred from the low degree harmonics of the geopotential, Geophys. J. Int. 14, 1-4, 375–384, DOI: 10.1111/j.1365- 246X.1967.tb06253.x.

    Article  Google Scholar 

  • Seeber, G. (2003), Satellite Geodesy, 2nd ed., Walter de Gruyter, Berlin, 589 pp.

    Book  Google Scholar 

  • Shin, Y.H., H. Xu, C. Braitenberg, J. Fang, and Y. Wang (2007), Moho undulations beneath Tibet from GRACE-integrated gravity data, Geophys. J. Int. 170, 3, 971–985, DOI: 10.1111/j.1365-246X.2007.03457.x.

    Article  Google Scholar 

  • Souriau, M., and A. Souriau (1983), Global tectonics and the geoid, Phys. Earth Planet. Int. 33, 2, 126–136, DOI: 10.1016/0031-9201(83)90145-0.

    Article  Google Scholar 

  • Šprlák, M., and P. Novák (2014a), Integral transformations of deflections of the vertical onto satellite-to-satellite tracking and gradiometric data, J. Geodesy 88, 7, 643–657, DOI: 10.1007/s00190-014-0711-2.

    Article  Google Scholar 

  • Šprlák, M., and P. Novák (2014b), Integral transformations of gradiometric data onto GRACE type of observable, J. Geodesy 88, 4, 377–390, DOI: 10.1007/s00190-013-0689-1.

    Article  Google Scholar 

  • Sun, W. (2014), Recent advances of computing coseismic deformations in theory and applications, Earthq. Sci. 27, 2, 217–227, DOI: 10.1007/s11589-014- 0077-9.

    Article  Google Scholar 

  • Sun, W., and S. Okubo (2004), Coseismic deformations detectable by satellite gravity missions: A case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain, J. Geophys. Res. 109, B4, B04405, DOI:10.1029/2003JB002554.

    Google Scholar 

  • Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: mission overview and early results, Geophys. Res. Lett. 31, 9, L09607, DOI:10.1029/2004GL019920.

    Google Scholar 

  • Tedla, G.E., M.V.D. Meijde, A.A. Nyblade, and F.D.V.D. Meer (2011), A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution, Geophys. J. Int. 187, 1, 1–9, DOI:10.1111/j.1365- 246X.2011.05140.x.

    Article  Google Scholar 

  • Tenzer, R., and M. Eshagh (2015), Subduction generated sub-crustal stress in Taiwan, Terr. Atm. Oceanic Sci. 26, 261–268, DOI: 10.3319/TAO.2014.12. 04.01(T).

    Article  Google Scholar 

  • Tenzer, R., M. Eshagh, and S. Jin (2015), Martian sub-crustal stress from gravity and topographic models, Earth Planet. Sci. Lett. 425, 84–92, DOI: 10.1016/j.epsl.2015.05.049.

    Article  Google Scholar 

  • Tikhonov, A.N. (1963), Solution of incorrectly formulated problems and regularization method, Soviet Math. Dokl. 5, 1035–1038.

    Google Scholar 

  • Tondi, R., R. Schivardi, I. Molinari, and A. Morelli (2012), Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data, J. Geophys. Res. 117, B9, B09401, DOI:10.1029/2012JB009149.

    Google Scholar 

  • von Frese, R.R.B., L.V. Potts, S.B. Wells, T.E. Leftwich, H.R. Kim, J.W. Kim, A.V. Golynsky, O. Hernandez, and L.R. Gaya-Piqué (2009), GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica, Geochem. Geophys. Geosyst. 10, 2, Q02014, DOI:10.1029/2008GC002149.

    Google Scholar 

  • Wang, L., C.K. L Shum, F.J. Simons, B. Tapley, and C. Dai (2012), Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry, Geophys. Res. Lett. 39, 7, L07301, DOI:10.1029/ 2012GL051104.

    Google Scholar 

  • Wolff, M. (1969), Direct measurements of the Earth’s gravitational potential using a satellite pair, J. Geophys. Res. 74, 22, 5295–5300, DOI:10.1029/ JB074i022p05295.

    Article  Google Scholar 

  • Zhao, S. (2013), Lithosphere thickness and mantle viscosity estimated from joint inversion of GPS and GRACE-derived radial deformation and gravity rates in North America, Geophys. J. Int. 194, 3, 1455–1472, DOI: 10.1093/gji/ ggt212.

    Article  Google Scholar 

  • Zuber, M.T., D.E. Smith, M.M. Watkins, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, H.J. Melosh, G.A. Neumann, R.J. Phillips, S.C. Solomon, M.A. Wieczorek, J.G. Williams, S.J. Goosens, G. Kruizinga, E. Mazarico, R.S. Park, and D.-N. Yuan (2013), Gravity field of the Moon from the gravity recovery and interior laboratory (GRAIL) mission, Science 339, 6120, 668–671, DOI: 10.1126/science.1231507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. NTIS — New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czech Republic

    Michal Šprlák

  2. Department of Engineering Science, University West, Trollhättan, Sweden

    Mehdi Eshagh

Authors
  1. Michal Šprlák
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mehdi Eshagh
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michal Šprlák.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šprlák, M., Eshagh, M. Local Recovery of Sub-Crustal Stress Due to Mantle Convection from Satellite-to-Satellite Tracking Data. Acta Geophys. 64, 904–929 (2016). https://doi.org/10.1515/acgeo-2016-0044

Download citation

  • Received: 21 November 2014

  • Revised: 22 July 2015

  • Accepted: 26 August 2015

  • Published: 02 December 2016

  • Issue Date: August 2016

  • DOI: https://doi.org/10.1515/acgeo-2016-0044

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • integral equation
  • upward/downward continuation
  • integral kernel
  • truncation error
  • GRACE satellite mission
  • stress function
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.