Skip to main content
Log in

Integral transformations of deflections of the vertical onto satellite-to-satellite tracking and gradiometric data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

With the advent of geodetic satellite missions mapping almost globally the Earth’s gravitational field, new methods and theoretical approaches have been developed and investigated to fully exploit the potential of their new observables. Besides estimating values of numerical coefficients in harmonic series of the gravitational potential, new applications emerged such as data validation and combination. In this contribution, new integral transformations are presented which transform principal components of the terrestrial deflection of the vertical onto disturbing satellite-to-satellite tracking and gradiometric data at altitude. Using spherical approximation, necessary integral kernel functions are derived in both spectral and closed forms. The behaviour of isotropic kernel functions is studied and the new integral transformations are tested in a closed-loop simulation using synthetic terrestrial and satellite data synthesized from a global gravitational model. New integral transformations can be used for data validation and combination purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. US Department of Commerce, National Bureau of Standards, Washington DC

  • Bölling C, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geodesy 79:300–330

    Article  Google Scholar 

  • Case K, Kuizinga G, Wu S-C (2010) GRACE level 1B data product user handbook. Version 1.3, March 24 2010, JPL D-22027, Jet Propulsion Laboratory, California Institute of Technology, USA

  • Denker H (2003) Computation of gravity gradients for Europe for calibration/validation of GOCE data. In: Tziavos IN (ed) Gravity and Geoid 2002, 3rd meeting of the IGGC, Ziti Editions, pp 287–292

  • Drinkwater MR, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core Earth Explorer. In: Proceedings of 3rd international GOCE user workshop, 6–8 November, 2006, Frascati, Italy, ESA SP-627, pp 1–8

  • Ecker E (1970) Upward continuation of the deflections of the vertical by spherical integral formulas. Studia Geophysica et Geodaetica 14:93–96

    Article  Google Scholar 

  • ESA (1999) Gravity field and steady-state ocean circulation mission. ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions, ESA Publication Division

  • Eshagh M (2011a) On integral approach to regional gravity field modelling from satellite gradiometric data. Acta Geophys. 59:29–54

    Article  Google Scholar 

  • Eshagh M (2011b) The effect of spatial truncation error on the integral inversion of satellite gravity gradiometry data. Adv Space Res 45:1238–1247

    Article  Google Scholar 

  • Eshagh M, Ghorbannia M (2013) The use of Gaussian equations of motions of a satellite for local gravity anomaly recovery. Adv Space Res 52:30–38

    Article  Google Scholar 

  • Garcia RV (2002) Local geoid determination from GRACE mission. Report No. 460, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus

  • Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem-vertical deflections and geoid undulations-the completed Meissl diagram. J Geodesy 75:363–390

    Article  Google Scholar 

  • Green G (1828) An essay on the application of mathematical analysis to the theories of electricity and magnetism. T. Wheelhouse, Nottingham 72 pp

    Google Scholar 

  • Haagmans R, Prijatna K, Omang OCD (2003) An alternative concept for validation of GOCE gradiometry results based on regional gravity. In: Tziavos IN (ed) Gravity and Geoid 2002. 3rd meeting of the IGGC, Ziti Editions, pp 281–286

  • Heck B (1979) Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten. Deutsche Geodätische Kommission, Reihe C, Nr. 259, München, Germany

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco

  • Hirt C, Seeber G (2008) Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D. J Geodesy 82:347–356

    Article  Google Scholar 

  • Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geodesy 85:723–740

    Article  Google Scholar 

  • Hotine M (1969) Mathematical geodesy. ESSA Monograph No. 2, US Department of Commerce, Washington DC

  • Hwang C (1998) Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over South China Sea. J Geodesy 72:304–312

    Article  Google Scholar 

  • Jekeli C (2000) Calibration/validation methods for GRACE. In: Schwarz KP (ed) Geodesy beyond 2000. IAG symposia series 121, Springer, Berlin pp 83–88

  • Jekeli C (2007) Potential theory and static gravity field of the Earth. In: Schubert G (ed) Treatise on geophysics, vol 3., Elsevier, Oxford, pp 11–42

  • Jekeli C, Lee J-K, Kwon JH (2007) Modeling errors in upward continuation for INS gravity compensation. J Geodesy 81:297–309

    Article  Google Scholar 

  • Keller W, Sharifi MA (2005) Satellite gradiometry using a satellite pair. J Geodesy 78:544–557

    Article  Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Dover Publications, New York

  • Kern M, Haagmans R (2005) Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric data. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia series 129. Springer, Berlin, pp 95–100

  • Kernighan BW, Ritchie DM (1988) The C programming language, 2nd edn. Prentice Hall, USA

  • Koop R (1993) Global gravity field modelling using satellite gravity gradiometry. Publications on Geodesy, Netherlands Geodetic Commission, No. 38, Delft, The Netherlands

  • Krantz SG (1999) A panorama of harmonic analysis. The Carus Mathematical Monographs, No. 27, The Mathematical Association of America, Washington DC

  • Li J (2002) A formula for computing the gravity disturbance from the second radial derivative of the disturbing potential. J Geodesy 76:226–231

    Article  Google Scholar 

  • Li J (2005) Integral formulas for computing the disturbing potential, gravity anomaly and the deflection of the vertical from the second-order radial gradient of the disturbing potential. J Geodesy 79:64–70

    Article  Google Scholar 

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geodesy 77:41–49

    Article  Google Scholar 

  • Meissl P (1971) A study of covariance functions related to the Earth’s disturbing potential. Report No. 151, Department of Geodetic Science, The Ohio State University, Columbus

  • Moritz H (2000) Geodetic reference system 1980. J Geodesy 74:128–133

    Article  Google Scholar 

  • Novák P (2003) Geoid determination using one-step integration. J Geodesy 77:193–206

    Article  Google Scholar 

  • Novák P (2007) Integral inversion of SST data of type GRACE. Studia Geophysica et Geodaetica 51:351–367

    Article  Google Scholar 

  • Novák P, Austen G, Sharifi MA, Grafarend EW (2006) Mapping Earth’s gravitation using GRACE data. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, Berlin, pp 149–164

    Chapter  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res (Solid Earth) 117:B04406

  • Petrovskaya MS, Zielinski JB (1997) Determination of the global and regional gravitational fields from satellite and balloon gradiometry missions. Adv Space Res 19:1723–1728

    Article  Google Scholar 

  • Pick M, Pícha J, Vyskočil V (1973) Theory of the Earth’s gravity field. Elsevier, Amsterdam

    Google Scholar 

  • Pizzetti P (1911) Sopra il calcolo teorico delle deviazioni del geoide dall’ ellissoide. Atti della Reale Accademia della Scienze di Torino 46:331

    Google Scholar 

  • Reed GB (1973) Application of kinematical geodesy for determining the short wavelength components of the gravity field by satellite gradiometry. Report No. 201, Ohio State University, Department of Geodetic Sciences, Columbus

  • Rummel R, van Gelderen M (1995) Meissl scheme-spectral characteristics of physical geodesy. Manuscripta Geodaetica 20: 379–385

    Google Scholar 

  • Sünkel H (1981) Feasibility for the prediction of the gravity disturbance vector in high altitudes. Report No. 311, Department of Geodetic Science, The Ohio State University, Columbus

  • Stokes GG (1849) On the variation of gravity on the surface of the Earth. Trans Camb Philos Soc 8:672–695

    Google Scholar 

  • Šprlák M, Novák P (2014) Integral transformations of gradiometric data onto a GRACE type of observable. J Geodesy 88:377–390. doi:10.1007/s00190-013-0689-1

    Google Scholar 

  • Šprlák M, Sebera J, Vaľko M, Novák P (2014) Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients. J Geodesy 88:179–197

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607

    Article  Google Scholar 

  • Thalhammer M (1995) Regionale Gravitationsfeldbestimmung mit zukünftigen Satellitenmissionen (SST und Gradiometrie). Deutsche Geodätische Kommission, Reihe C, Nr. 437, München

  • Tóth G (2003) The Eötvös spherical horizontal gradiometric boundary value problem-gravity anomalies from gravity gradients of the torsion balance. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd meeting of the IGGC, Ziti Editions, pp 102–107

  • Tóth G, Rózsa S, Ádám J, Tziavos IN (2002) Gravity field modeling by torsion balance data-a case study in Hungary. In: Ádám J, Schwarz KP (eds) Vistas for geodesy in the new millenium, IAG symposia series 125. Springer, Berlin, pp 193–198

  • Tóth G, Ádám J, Földváry L, Tziavos IN, Denker H (2005) Calibration/validation of GOCE data by terrestrial torsion balance observations. In: Sansó F (ed) A window on the future geodesy, IAG symposia series 128. Springer, Berlin, pp 214–219

  • Tóth G, Földváry L, Tziavos IN, Ádám J (2006) Upward/downward continuation of gravity gradients for precise geoid determination. Acta Geodaetica et Geophysica Hungarica 41:21–30

    Article  Google Scholar 

  • van Gelderen M, Rummel R (2001) The solution of the general geodetic boundary value problem by least squares. J Geodesy 75:1–11

    Article  Google Scholar 

  • van Gelderen M, Rummel R (2002) Corrections to “The solution of the general geodetic boundary value problem by least squares”. J Geodesy 76:121–122

    Article  Google Scholar 

  • Vening-Meinesz FA (1928) A formula expressing the deflection of the plumb-lines in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid. Koninklijke Nederlandsche Akademie van Wetenschappen 31:315–331

    Google Scholar 

  • Winch DE, Roberts PH (1995) Derivatives of addition theorem for Legendre functions. J Aust Math Soc Ser B Appl Math 37:212–234

    Article  Google Scholar 

  • Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrische Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satelitenbahnhöhe. Deutsche Geodätische Kommission, Reihe C, Nr. 603, München, Germany

  • Wolf KI, Denker H (2005) Upward continuation of ground data for GOCE calibration. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia series 129. Springer, Berlin, pp 60–65

  • Zhu J, Jekeli C (2009) Gravity gradient modeling using gravity and DEM. J Geodesy 83:557–567

    Article  Google Scholar 

Download references

Acknowledgments

Michal Šprlák was supported by the project EXLIZ—CZ.1.07/2.3.00/30.0013, which is co-financed by the European Social Fund and the state budget of the Czech Republic. Pavel Novák was supported by the project 209/12/1929 of the Czech Science Foundation. Thoughtful and constructive comments of three anonymous reviewers are gratefully acknowledged. Thanks are also extended to the editor-in-chief Roland Klees and the responsible editor Christopher Jekeli for handling our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Šprlák.

Appendices

A: Application of differential operators on a multiplication of two functions

In this appendix we demonstrate application of the differential operators, which relate the principal components of the deflection of the vertical to SST data or GGs, on a multiplication of two functions. Suppose two general functions \(f = f(\varphi , \lambda , \varphi ', \lambda ')\) and \(h = h(r, \varphi , \lambda , R, \varphi ', \lambda ')\). Applying either the differential operator of Eq. (15) or (17) on multiplication of the functions \(f\) and \(h\) yields

$$\begin{aligned} \rho \left[ {\mathbf {e}} \cdot \delta \nabla (f\ h) \right]&= \ \rho \ \delta \left[ \ e_{x}\ (f\ \nabla h\ +\ h\ \nabla f)\ \right. \nonumber \\&+\ e_{y}\ (f\ \nabla h + h\ \nabla f)\ \nonumber \\&\left. +\ e_{z}\ (f\ \nabla h + h\ \nabla f)\ \right] . \end{aligned}$$
(90)

Applying the differential operators of Eqs. (4045) on multiplication of the functions \(f\) and \(h\) results in

$$\begin{aligned} {\mathcal {D}}^{xx}(f\ h)&= \ f\ {\mathcal {D}}^{xx} h + h\ {\mathcal {D}}^{xx} f + \frac{2}{r^2}\ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial \varphi }, \end{aligned}$$
(91)
$$\begin{aligned} {\mathcal {D}}^{xy}(f\ h)&= \ f\ {\mathcal {D}}^{xy} h\ +\ h\ {\mathcal {D}}^{xy} f\ \nonumber \\&-\ \frac{1}{r^2 \cos \varphi }\ \left( \ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial \lambda }\ +\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial \varphi }\ \right) , \end{aligned}$$
(92)
$$\begin{aligned} {\mathcal {D}}^{xz}(f\ h)&= \ f\ {\mathcal {D}}^{xz} h\ +\ h\ {\mathcal {D}}^{xz} f\ +\ \frac{1}{r}\ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial r}, \end{aligned}$$
(93)
$$\begin{aligned} {\mathcal {D}}^{yy}(f\ h)&= \ f\ {\mathcal {D}}^{yy} h\ +\ h\ {\mathcal {D}}^{yy} f\ +\ \frac{2}{r^2 \cos ^2 \varphi }\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial \lambda }, \end{aligned}$$
(94)
$$\begin{aligned} {\mathcal {D}}^{yz}(f\ h)&= \ f\ {\mathcal {D}}^{yz} h\ +\ h\ {\mathcal {D}}^{yz} f\ -\ \frac{1}{r \cos \varphi }\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial r}, \end{aligned}$$
(95)
$$\begin{aligned} {\mathcal {D}}^{zz}(f\ h)&= \ f\ {\mathcal {D}}^{zz} h. \end{aligned}$$
(96)

B: Additional terms from application of differential operators on multiplication of two functions

We now focus on an explicit expressions of the additional terms, i.e., the last terms in Eqs. (9195). Suppose that the function h is parametrized in terms of substitutions \(t\) and \(u\), i.e., \(h = h(t,u)\). Two forms of the function \(f\) are of particular interest:

  1. 1.

    \(f = \cos \alpha '\), then the additional terms are:

    $$\begin{aligned}&\frac{2}{r^2}\ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial \varphi }\ =\ -\ \frac{t^2 \sin \alpha ' \sin 2 \alpha }{R^2}\ \frac{\partial h}{\partial u}, \end{aligned}$$
    (97)
    $$\begin{aligned}&\quad -\ \frac{1}{r^2 \cos \varphi }\ \left( \ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial \lambda }\ +\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial \varphi }\ \right) \ \nonumber \\&\quad =\ -\ \frac{t^2 \sin \alpha ' \cos 2 \alpha }{R^2}\ \frac{\partial h}{\partial u}, \end{aligned}$$
    (98)
    $$\begin{aligned}&\frac{1}{r}\ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial r}\ =\ \frac{t^3 \sin \alpha ' \sin \alpha }{R^2 \sqrt{1 - u^2}}\ \frac{\partial h}{\partial t}, \end{aligned}$$
    (99)
    $$\begin{aligned}&\frac{2}{r^2 \cos ^2 \varphi }\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial \lambda }\ =\ \frac{t^2 \sin \alpha ' \sin 2 \alpha }{R^2}\ \frac{\partial h}{\partial u}, \end{aligned}$$
    (100)
    $$\begin{aligned}&-\ \frac{1}{r \cos \varphi }\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial r}\ =\ \frac{t^3 \sin \alpha ' \cos \alpha }{R^2 \sqrt{1 - u^2}}\ \frac{\partial h}{\partial t}. \end{aligned}$$
    (101)
  2. 2.

    \(f = \sin \alpha '\), then the additional terms are:

    $$\begin{aligned}&\frac{2}{r^2}\ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial \varphi }\ =\ \frac{t^2 \cos \alpha ' \sin 2 \alpha }{R^2}\ \frac{\partial h}{\partial u}, \end{aligned}$$
    (102)
    $$\begin{aligned}&- \frac{1}{r^2 \cos \varphi }\ \left( \ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial \lambda }\ +\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial \varphi }\ \right) \ \nonumber \\&\quad = \frac{t^2 \cos \alpha ' \cos 2 \alpha }{R^2}\ \frac{\partial h}{\partial u}, \end{aligned}$$
    (103)
    $$\begin{aligned}&\frac{1}{r}\ \frac{\partial f}{\partial \varphi }\ \frac{\partial h}{\partial r}\ =\ -\ \frac{t^3 \cos \alpha ' \sin \alpha }{R^2 \sqrt{1 - u^2}}\ \frac{\partial h}{\partial t}, \end{aligned}$$
    (104)
    $$\begin{aligned}&\frac{2}{r^2 \cos ^2 \varphi }\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial \lambda }\ =\ -\ \frac{t^2 \cos \alpha ' \sin 2 \alpha }{R^2}\ \frac{\partial h}{\partial u}, \end{aligned}$$
    (105)
    $$\begin{aligned}&-\ \frac{1}{r \cos \varphi }\ \frac{\partial f}{\partial \lambda }\ \frac{\partial h}{\partial r}\ =\ -\ \frac{t^3 \cos \alpha ' \cos \alpha }{R^2 \sqrt{1 - u^2}}\ \frac{\partial h}{\partial t}. \end{aligned}$$
    (106)

C: Application of differential operators on \(\cos \alpha '\) and \(\sin \alpha '\)

To derive the integral formula transforming the principal components of the deflection of the vertical onto SST data, application of the differential operators of Eqs. (5) and (16) to \(\cos \alpha '\) and \(\sin \alpha '\) is required. The explicit expressions are of the form, see, e.g., (Winch and Roberts 1995),

$$\begin{aligned} {\mathcal {D}}^{x} \cos \alpha '&= - \frac{t \sin \alpha ' \sin \alpha }{R \sqrt{1-u^2}}, \end{aligned}$$
(107)
$$\begin{aligned} {\mathcal {D}}^{y} \cos \alpha '&= \ \frac{t \sin \alpha ' \cos \alpha }{R \sqrt{1-u^2}}, \end{aligned}$$
(108)
$$\begin{aligned} {\mathcal {D}}^{z} \cos \alpha '&= \ 0 , \end{aligned}$$
(109)
$$\begin{aligned} {\mathcal {D}}^{x} \sin \alpha '&= \ \frac{t \cos \alpha ' \sin \alpha }{R \sqrt{1-u^2}}, \end{aligned}$$
(110)
$$\begin{aligned} {\mathcal {D}}^{y} \sin \alpha '&= \ -\ \frac{t \cos \alpha ' \cos \alpha }{R \sqrt{1-u^2}}, \end{aligned}$$
(111)
$$\begin{aligned} {\mathcal {D}}^{z} \sin \alpha '&= \ 0. \end{aligned}$$
(112)

For the mathematical derivations associated to ITs of the principal components of the deflection of the vertical onto GGs, we need also expressions originating from the application of the differential operators \({\mathcal {D}}^{xx}\), \({\mathcal {D}}^{xy}\), \({\mathcal {D}}^{xz}\), \({\mathcal {D}}^{yy}\) and \({\mathcal {D}}^{yz}\) on \(\cos \alpha '\) and \(\sin \alpha '\). These expressions have the form:

$$\begin{aligned} {\mathcal {D}}^{xx} \cos \alpha '&= \ -\ \frac{t^2 \left( \cos \alpha ' - \cos \alpha ' \cos 2 \alpha + 2 u \sin \alpha ' \sin 2 \alpha \right) }{2 R^2 (1 - u^2)}, \end{aligned}$$
(113)
$$\begin{aligned} {\mathcal {D}}^{xy} \cos \alpha '&= \ -\ \frac{t^2 \left( \cos \alpha ' \sin 2 \alpha + 2 u \sin \alpha ' \cos 2 \alpha \right) }{2 R^2 (1 - u^2)}, \end{aligned}$$
(114)
$$\begin{aligned} {\mathcal {D}}^{xz} \cos \alpha '&= \ \frac{t^2 \sin \alpha ' \sin \alpha }{R^2 \sqrt{1 - u^2}}, \end{aligned}$$
(115)
$$\begin{aligned} {\mathcal {D}}^{yy} \cos \alpha '&= \ -\ \frac{t^2 \left( \cos \alpha ' + \cos \alpha ' \cos 2 \alpha - 2 u \sin \alpha ' \sin 2 \alpha \right) }{2 R^2 (1 - u^2)}, \end{aligned}$$
(116)
$$\begin{aligned} {\mathcal {D}}^{yz} \cos \alpha '&= \ \frac{t^2 \sin \alpha ' \cos \alpha }{R^2 \sqrt{1 - u^2}}, \end{aligned}$$
(117)
$$\begin{aligned} {\mathcal {D}}^{xx} \sin \alpha '&= \ -\ \frac{t^2 \left( \sin \alpha ' - \sin \alpha ' \cos 2 \alpha - 2 u \cos \alpha ' \sin 2 \alpha \right) }{2 R^2 (1 - u^2)}, \end{aligned}$$
(118)
$$\begin{aligned} {\mathcal {D}}^{xy} \sin \alpha '&= \ -\ \frac{t^2 \left( \sin \alpha ' \sin 2 \alpha - 2 u \cos \alpha ' \cos 2 \alpha \right) }{2 R^2 (1 - u^2)}, \end{aligned}$$
(119)
$$\begin{aligned} {\mathcal {D}}^{xz} \sin \alpha '&= \ -\ \frac{t^2 \cos \alpha ' \sin \alpha }{R^2 \sqrt{1 - u^2}},\nonumber \\ \end{aligned}$$
(120)
$$\begin{aligned} {\mathcal {D}}^{yy} \sin \alpha '&= \ -\ \frac{t^2 \left( \sin \alpha ' + \sin \alpha ' \cos 2 \alpha + 2 u \cos \alpha ' \sin 2 \alpha \right) }{2 R^2 (1 - u^2)},\end{aligned}$$
(121)
$$\begin{aligned} {\mathcal {D}}^{yz} \sin \alpha '&= \ -\ \frac{t^2 \cos \alpha ' \cos \alpha }{R^2 \sqrt{1 - u^2}}. \end{aligned}$$
(122)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šprlák, M., Novák, P. Integral transformations of deflections of the vertical onto satellite-to-satellite tracking and gradiometric data. J Geod 88, 643–657 (2014). https://doi.org/10.1007/s00190-014-0711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0711-2

Keywords

Navigation