Abramov, O., and S.J. Mojzsis (2011), Abodes for life in carbonaceous asteroids? Icarus 213, 1, 273–279, DOI: 10.1016/j.icarus.2011.03.003.
Article
Google Scholar
Bobojć, A., and A. Drożyner (2011), GOCE satellite orbit in the aspect of selected gravitational perturbations, Acta Geophys. 59, 2, 428–452, DOI: 10.2478/s11600-010-0052-3.
Google Scholar
Charnoz, S., A. Morbidelli, L. Dones, and J. Salmon (2009), Did Saturn’s rings form during the Late Heavy Bombardment? Icarus 199, 2, 413–428, DOI: 10.1016/j.icarus.2008.10.019.
Article
Google Scholar
Christensen, U. (1984), Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. Int. 77, 2, 343–384, DOI: 10.1111/j.1365-246X.1984.tb01939.x.
Article
Google Scholar
Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystynski (eds.), Dynamics of the Earth’s Evolution, PWN — Polish Scientific Publ., Warszawa, Elsevier, Amsterdam, 161–271.
Google Scholar
Czechowski, L. (2006a), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38, 4, 788–793, DOI: 10.1016/j.asr.2005.12.013.
Article
Google Scholar
Czechowski, L. (2006b), Two models of parameterized convection for mediumsized icy satellites of Saturn, Acta Geophys. 54, 3, 280–302, DOI 10.2478/s11600-006-0021-z.
Article
Google Scholar
Czechowski, L. (2009), Uniform parameterized theory of convection in medium sized icy satellites of Saturn, Acta Geophys. 57, 2, 548–566, DOI: 10.2478/s11600-008-0084-0.
Article
Google Scholar
Czechowski, L. (2012), Thermal history and large scale differentiation of the Saturn’s satellite Rhea, Acta Geophys. 60, 4, 1192–1212, DOI: 10.2478/s11600-012-0041-9.
Article
Google Scholar
Czechowski, L. (2014), Some remarks on the early evolution of Enceladus, Planet. Space Sci. 104, 185–199, DOI: 10.1016/j.pss.2014.09.010.
Article
Google Scholar
Czechowski, L., and K.J. Kossacki (2012), Thermal convection in the porous methane-soaked regolith in Titan: finite amplitude convection, Icarus 217, 1, 130–143, DOI: 10.1016/j.icarus.2011.10.006.
Article
Google Scholar
Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141–166, DOI:10.1017/S0022112093001740.
Article
Google Scholar
Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, B6, 12759–12777, DOI: 10.1029/1999JB900110.
Article
Google Scholar
Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 63–78, DOI: 10.1007/978-94-011-5252-5_3.
Ellsworth, K., and G. Schubert (1983), Saturn’s icy satellites: Thermal and structural models, Icarus 54, 3, 490–510, DOI: 10.1016/0019-1035(83)90242-7.
Article
Google Scholar
Eluszkiewicz, J. (1990), Compaction and internal structure of Mimas, Icarus 84, 1, 215–225, DOI: 10.1016/0019-1035(90)90167-8.
Article
Google Scholar
Essa, K.S. (2007), A simple formula for shape and depth determination from residual gravity anomalies, Acta Geophys. 55, 2, 182–190, DOI: 10.2478/s11600-007-0003-9.
Article
Google Scholar
Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus 94, 1, 232–245, DOI: 10.1016/0019-1035(91)90153-K.
Article
Google Scholar
Goldsby, D.L., and D.L. Kohlstedt (1997), Grain boundary sliding in fine-grained Ice — I, Scripta. Mater. 37, 9, 1399–1406, DOI: 10.1016/S1359-6462(97)00246-7.
Article
Google Scholar
Grasset, O., and E.M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary evolution, J. Geophys. Res. 103, B8, 18171–18181, DOI: 10.1029/98JB01492.
Article
Google Scholar
Jaumann, R., R.N. Clark, F. Nimmo, A.R. Hendrix, B.J. Buratti, T. Denk, J.M. Moore, P.M. Schenk, S.J. Ostro, and R. Srama (2009), Icy satellites: Geological evolution and surface processes. In: M.K. Dougherty L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer Science+Business Media, Dordrecht, 637–681, DOI: 10.1007/978-1-4020-9217-6_20.
Chapter
Google Scholar
Kriegel, H., S. Simon, J. Müller, U. Motschmann, J. Saur, K.-H. Glassmeier, and M.K. Dougherty (2009), The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data, Planet. Space Sci. 57, 14–15, 2113–2122, DOI: 10.1016/j.pss.2009.09.025.
Article
Google Scholar
Leliwa-Kopystynski, J., and K.J. Kossacki (2000), Evolution of porosity in small icy bodies, Planet. Space Sci. 48, 7–8, 727–745, DOI: 10.1016/S0032-0633(00)00038-6.
Article
Google Scholar
Malamud, U., and D. Prialnik (2013), Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas, Icarus 225, 1, 763–774, DOI:10.1016/j.icarus.2013.04.024.
Article
Google Scholar
Matson, D.L., J.C. Castillo-Rogez, G. Schubert, C. Sotin, and W.B. McKinnon (2009), The thermal evolution and internal structure of Saturn’s mid-sized icy satellites. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer Science+Business Media, Dordrecht, 577–612, DOI: 10.1007/978-1-4020-9217-6_18.
Chapter
Google Scholar
McKinnon, W.B. (1998), Geodynamics of icy satellites. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 525–550, DOI: 10.1007/978-94-011-5252-5_22.
McKinnon, W.B., and A.C. Barr (2007), The Mimas paradox revisited plus crustal spreading on Enceladus? LPI Contrib. 1357, 91–92.
Google Scholar
Merk, R., D. Breuer, and T. Spohn (2002), Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion, Icarus 159, 1, 183–191, DOI: 10.1006/icar.2002.6872.
Article
Google Scholar
Meyer, J., and J. Wisdom (2008), Tidal evolution of Mimas, Enceladus, and Dione, Icarus 193, 1, 213–223, DOI: 10.1016/j.icarus.2007.09.008.
Article
Google Scholar
Multhaup, K., and T. Spohn (2007), Stagnant lid convection in the mid-sized icy satellite of Saturn, Icarus 186, 2, 420–435, DOI: 10.1016/j.icarus.2006.09.001.
Article
Google Scholar
Muro, G.D., and F. Nimmo (2011), Modeling the coupled thermal and orbital evolution of Mimas, LPI Contrib. 1608, 1560.
Google Scholar
Peale, S.J. (2003), Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87, 1–2, 129–155, DOI: 10.1023/A:1026187917994.
Article
Google Scholar
Peale, S.J., P. Cassen, and R.T. Reynolds (1979), Melting of Io by tidal dissipation, Science 203, 4383, 892–894, DOI: 10.1126/science.203.4383.892.
Article
Google Scholar
Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. In. 29, 3–4, 281–304, DOI: 10.1016/0031-9201(82)90018-8.
Article
Google Scholar
Poirier, J.P., L. Boloh, and P. Chambon (1983), Tidal dissipation in small viscoelastic ice moons: The case of Enceladus, Icarus 55, 2, 218–230, DOI: 10.1016/0019-1035(83)90076-3.
Article
Google Scholar
Robuchon, G., G. Choblet, G. Tobie, O. Čadek, C. Sotin, and O. Grasset (2010), Coupling of thermal evolution and despinning of early Iapetus, Icarus 207, 2, 959–971, DOI: 10.1016/j.icarus.2009.12.002.
Article
Google Scholar
Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, British J. Appl. Phys. 3, 8, 267–269, DOI: 10.1088/0508-3443/3/8/306.
Article
Google Scholar
Rothery, D.A. (1992), Satellites of the Outer Planets: Worlds in Their Own Right, Clarendon Press, Oxford, 208 pp.
Google Scholar
Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, 224–292.
Google Scholar
Schubert, G., D.L. Turcotte, and P. Olson (2001), Mantle Convection in the Earth and Planets, Cambridge Univ. Press, Cambridge, 956 pp.
Book
Google Scholar
Schubert, G., J.D. Anderson, B.J. Travis, and J. Palguta (2007), Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating, Icarus 188, 2, 345–355, DOI: 10.1016/j.icarus.2006.12.012.
Article
Google Scholar
Sharpe, H.N., and W.R. Peltier (1978), Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 9, 737–740, DOI: 10.1029/GL005i009p00737.
Article
Google Scholar
Spencer, J.R., A.C. Barr, L.W. Esposito, P. Helfenstein, A.P. Ingersoll, R. Jaumann, C.P. McKay, F. Nimmo, and J.H. Waite (2009), Enceladus: An active cryovolcanic satellite. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer Science+Business Media, Dordrecht, 683–724, DOI: 10.1007/978-1-4020-9217-6_21.
Chapter
Google Scholar
Taubner, R.S., J.J. Leitner, M.G. Firneis, and R. Hirzenberger (2014), Including Cassini’s gravity measurements from the flybys E9, E12, E19 into interior structure models of Enceladus. In: Proc. European Planetary Science Congress, 7–12 September 2014, Cascais, Portugal, EPSC Abstracts, 2014-
Google Scholar
Thomas, P.C. (2010), Sizes, shapes, and derived properties of the Saturnian satellites after the Cassini nominal mission, Icarus 208, 61, 395–401, DOI: 10.1016/j.icarus.2010.01.025.
Article
Google Scholar
Turcotte, D.L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge University Press, Cambridge, 465 pp.
Book
Google Scholar
Zahnle, K., P. Schenk, H. Levison, and L. Dones (2003), Cratering rates in the outer Solar System, Icarus 163, 2, 263–289, DOI: 10.1016/S0019-1035(03)00048-4.
Article
Google Scholar