Skip to main content

Enceladus: An Active Cryovolcanic Satellite

  • Chapter
Saturn from Cassini-Huygens

Abstract

Enceladus is one of the most remarkable satellites in the solar system, as revealed by Cassini's detection of active plumes erupting from warm fractures near its south pole. This discovery makes Enceladus the only icy satellite known to exhibit ongoing internally driven geological activity. The activity is presumably powered by tidal heating maintained by Enceladus' 2:1 mean-motion resonance with Dione, but many questions remain. For instance, it appears difficult or impossible to maintain the currently observed radiated power (probably at least 6 GW) in steady state. It is also not clear how Enceladus first entered its current self-maintaining warm and dissipative state- initial heating from non-tidal sources is probably required. There are also many unanswered questions about Enceladus' interior. The silicate fraction inferred from its density of 1:68gcm−2 is probably differentiated into a core, though we have not direct evidence for differentiation. Above the core there is probably a global or regional liquid water layer, inferred from several models of tidal heating, and an ice shell thick enough to support the ~1 km amplitude topography seen on Enceladus. It is possible that dissipation is largely localized beneath the south polar region. Enceladus' surface geology, ranging from moderately cratered terrain to the virtually crater-free active south polar region, is highly diverse, tectonically complex, and remarkably symmetrical about the rotation axis and the direction to Saturn. South polar activity is concentrated along the four “tiger stripe” fractures, which radiate heat at temperatures up to at least 167K and are the source of multiple plumes ejecting ~200kgs−2 of H2O vapor along with significant N2 (or C2H4), CO2, CH4, NH3, and higher-mass hydrocarbons. The escaping gas maintains Saturn's neutral gas torus, and the plumes also eject a large number of micron-sized H2O ice grains that populate Saturn's E-ring. The mechanism that powers the plumes is not well understood, and whether liquid water is involved is a subject of active debate. Enceladus provides perhaps the most promising potential habitat for life in the outer solar system, and the active plumes allow the unique opportunity for direct sampling of that zone. Enceladus is thus a prime target for Cassini's continued exploration of the Saturn system, and will be a tempting target for future missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov, O., Spencer J.R.: Endogenic heat from Enceladus' south polar fractures: New observations, and models of conductive surface heating. Icarus 199, 189–196 (2009).

    Article  ADS  Google Scholar 

  • Anderson, D.L.: Theory of the Earth. Blackwell, London (1989).

    Google Scholar 

  • Barr, A.C., McKinnon, W.B.: Convection in Enceladus' ice shell: Conditions for initiation. Geophys. Res. Lett. 34, L09202. (2007a).

    Article  Google Scholar 

  • Barr, A.C., McKinnon, W.B.: Convection in ice I shells and mantles with self-consistent grain size, J. Geophys. Res. 112, E02012 (2007b). doi: 10.1029/2006JE002781.

    Article  Google Scholar 

  • Barr, A.C.: Mobile lid convection beneath Enceladus' south polar terrain, J. Geophys. Res. 113, E07009 (2008). doi: 10.1029/2008JE003114.

    Article  Google Scholar 

  • Baum, W.A., Kreidl, T., Westphal, J.A., Danielson, G.E., Seidelmann, P.K., Pascu, D., Currie, D.G.: Saturn's E ring. Icarus 47, 84–96 (1981).

    Article  ADS  Google Scholar 

  • Benjamin, D., Wahr, J., Ray, R.D., Egbert, G.D. Desai, S.D.: Constraints on mantle anelasticity from geodetic observations, and implications for the J(2) anomaly, Geophys. J. Int. 165, 3–16 (2006).

    Article  ADS  Google Scholar 

  • Bills, B.G.: Free and forced obliquities of the Galilean satellites of Jupiter. Icarus 175, 233–247 (2005).

    Article  ADS  Google Scholar 

  • Bills, B.G. Nimmo, F.: Forced obliquity and moments of inertia of Titan. Icarus 196, 293–297 (2008).

    Article  ADS  Google Scholar 

  • Bills, B.G., Nimmo F., Karatekin O., Van Hoolst, T., Rambaux, N, Levrard B., Laskar, J.: Rotational dynamics of Europa. In: Pappalardo, R., McKinnon, W. Khurana, K (eds.) Europa, Univ. Ariz. Press., Tucson, in press (2009).

    Google Scholar 

  • Bland, M.T., Beyer R.A., Showman A.P: Unstable extension of Enceladus' lithosphere. Icarus 192, 92–105 (2007).

    Article  ADS  Google Scholar 

  • Brilliantov, N.V., Schmidt, J., Spahn, F.: Geysers of Enceladus: Quantitative analysis of qualitative models. Planet. Space Sci. 56, 1596–1606 (2008).

    Article  ADS  Google Scholar 

  • Brown, R.H. and 24 co-authors: Composition and physical properties of Enceladus' surface. Science 311, 1425–1428 (2006).

    Article  ADS  Google Scholar 

  • Buratti, B. J.: Enceladus — Implications of its unusual photometric properties. Icarus 75, 113–126 (1988).

    Article  ADS  Google Scholar 

  • Buratti, B., Veverka, J.: Voyager photometry of Rhea, Dione, Tethys, Enceladus and Mimas. Icarus 58, 254–264 (1984).

    Article  ADS  Google Scholar 

  • Buratti, B.J., Mosher, J.A., Nicholson, P.D., McGhee, C.A., French, R.G.: Near-infrared photometry of the Saturnian satellites during ring plane crossing. Icarus 136, 223–231 (1998).

    Article  ADS  Google Scholar 

  • Chapelle, F.H., O'Neill K., Bradley P.M., Methe B.A., Ciufo S.A., Knobel L.L., Lovley D.R.: A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).

    Article  ADS  Google Scholar 

  • Chyba, C.F., Phillips, C.B.: Possible ecosystems and the search for life on Europa. Proc. Natl Acad. Sci. 98, 801–804 (2001).

    Article  ADS  Google Scholar 

  • Clark, R.N.: Water frost and ice: The near-infrared spectral reflectance 0:65–2:5 μm. J. Geophys. Res. 86, 3087–3096 (1981).

    Article  ADS  Google Scholar 

  • Clark, R.N., Lucey, P.G.: Spectral properties of ice-particulate mixtures and implications for remote sensing. I. Intimate mixtures. J. Geophys. Res. 89, 6341–6348 (1984).

    Article  ADS  Google Scholar 

  • Collins, G.C., Goodman, J.C.: Enceladus' south polar sea Icarus 189, 72–82 (2007).

    Article  ADS  Google Scholar 

  • Corliss, J.B., Baross, J.A., Hoffman, S.E.: An hypothesis concern-ing_the relationship between submarine hot springs and the origin of life. Oceanologica Acta 4. suppl. C4, 59–69 (1981).

    Google Scholar 

  • Coustenis, A. and 155 co-authors: TandEM: Titan and Enceladus mission. Exper. Astron. 23(2008). doi: 10.1007/s10686–008-9103-z

    Google Scholar 

  • Cruikshank, D.P: Near-infrared studies of the satellites of Saturn and Uranus. Icarus 41, 246–258 (1980).

    Article  ADS  Google Scholar 

  • Cruikshank, D.P, Owen, T.B., Dalle Ore, C, Geballe, T.R., Roush, T.L., de Bergh, C, Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P: A spectroscopic study of the surface of Saturn's large satellites: H2O ice, tholins, and minor constituents. Icarus 175, 268–283 (2005).

    Article  ADS  Google Scholar 

  • Czechowski, L.: Parameterized model of convection driven by tidal and radiogenic heating. Adv. Space Res. 38, 788–793 (2006).

    Article  ADS  Google Scholar 

  • Davis, W.L., McKay, C.P: Origins of life: A comparison of theories and application to Mars. Origins Life Evol. Biosph. 26, 61–73 (1996).

    Article  ADS  Google Scholar 

  • Dermott, S.F., Thomas PC: The shape and internal structure of Mimas, Icarus 73, 25–65 (1988).

    Article  ADS  Google Scholar 

  • Dermott, S.F., Malhotra, R., Murray, CD.: Dynamics of the Uranian and Saturnian satellite systems: A chaotic route to melting Miranda? Icarus 76, 295–334 (1988).

    Article  ADS  Google Scholar 

  • Dougherty, M.K., Khurana, K.K., Neubauer, F.M., Russell, C.T., Saur, J., Leisner, J.S., Burton, M.E.: Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006).

    Article  ADS  Google Scholar 

  • Durham, W. B., Kirby S.H., Stern, L.A.: Effect of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res. 97, 20,883–20,897 (1992).

    Article  ADS  Google Scholar 

  • Durham, W.B., Stern, L.A.: Rheological properties of water ice-Applications to satellites of the outer planets. Ann. Rev. Earth Planet. Sci. 29, 295–330 (2001).

    Article  ADS  Google Scholar 

  • Emery, J.P, Burr, D.M., Cruikshank, D.P, Brown, R.H., Dalton, J.B.: Near-infrared.0:8–4:0 (im/ spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astron. Astrophys. 435, 353–362 (2005).

    Article  ADS  Google Scholar 

  • Esposito, L.W., and 15 co-authors: Ultraviolet imaging spectroscopy shows an active Saturnian system. Science 307, 1251–1255 (2005).

    Article  ADS  Google Scholar 

  • Feibelman, W. A.: Concerning the “D” ring of Saturn. Nature 214, 793–794 (1967).

    Article  ADS  Google Scholar 

  • Friedson, A.J., Stevenson, D.J.: Viscosity of rock ice mixtures and applications to the evolution of icy satellites, Icarus 56, 1–14 (1983).

    Article  ADS  Google Scholar 

  • Gaidos, E.J., Nealson, K.H., Kirschvink, J.L.: Life in ice-covered oceans. Science 284, 1631–1633 (1999).

    Article  Google Scholar 

  • Giese, B., Wagner, R., Hussmann, H., Neukum, G., Perry, J., Helfen-stein, P, Thomas, PC: Enceladus: An estimate of heat flux and litho-spheric thickness from flexurally supported topography. Geophys. Res. Lett. 35, L24204 (2008).

    Article  ADS  Google Scholar 

  • Gioia, G., Chakraborty, P., Marshak, S., Kieffer, S.W: Unified model of tectonics and heat transport in a frigid Enceladus. Proc. Natl Acad. Sci. 104, 13578–13581 (2007).

    Article  ADS  Google Scholar 

  • Gladman, B., Dones, L., Levison, H.F., Burns, J.A.: Impact seeding and reseeding. in the inner solar system. Astrobiology 5, 483–496 (2005).

    Article  ADS  Google Scholar 

  • Glein, C.R., Zolotov, M.Y., Shock, E.: The oxidation state of hydrother-mal systems on early Enceladus, Icarus 197, 157–163 (2008).

    Article  ADS  Google Scholar 

  • Goldsby, D.L., Kohlstedt, D.L.: Superplastic deformation in ice: Exper-imental observations. J. Geophys. Res. 106, 11,017–11,030 (2001).

    Article  ADS  Google Scholar 

  • Gribb, T.T., Cooper, R.F.: Low frequency shear attenuation in polycrys-talline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology J. Geophys. Res. 103, 27,267–27,279 (1998).

    Article  ADS  Google Scholar 

  • Grott, M., Sohl, F, Hussmann, H.: Degree-one convection and the origin of Enceladus' dichotomy, Icarus 191, 203–210 (2007). doi:10.1016/j.icarus.2007.05.001.

    Article  ADS  Google Scholar 

  • Grundy, W.M., Buie, M.W, Stansberry, J.A., Spencer, J.R., Schmitt, B.: Near-infrared spectra of icy outer Solar System surfaces: Remote determination of H2O ice temperatures. Icarus 142, 536–549 (1999).

    Article  ADS  Google Scholar 

  • Haff, P.K., Siscoe, G.L., Eviatar, A.: Ring and plasma — The enigmae of Enceladus. Icarus 56, 426–438 (1983).

    Article  ADS  Google Scholar 

  • Halevy, I., and Stewart S.T.: Is Enceladus' plume tidally controlled?, Geophys. Res. Lett. 35, L12203 (2008). doi: 10.1029/2008GL034349.

    Article  ADS  Google Scholar 

  • Hamilton, D.P, Burns, J.A.: Origin of Saturn's E-ring: Self-sustained, naturally. Science 264, 5158 (1994).

    Article  Google Scholar 

  • Han, L., Showman, A.P: Implications of shear heating and fracture zones for ridge formation on Europa, Geophys. Res. Lett. 35, L03202 (2008). doi: 10.1029/2007GL031957.

    Article  Google Scholar 

  • Hand, K.P., Carlson, R.W., Chyba, C.F.: Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7, 1006–1022 (2007).

    Article  ADS  Google Scholar 

  • Hansen, C. J., Esposito L., Stewart, A.I.F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D., West R.: Enceladus' water vapor plume. Science 311, 1422–1425 (2006).

    Article  ADS  Google Scholar 

  • Hansen, C.J., Esposito, L.W., Stewart, A.I.F., Meinke, B., Wallis, B., Colwell, J.E., Hendrix, A.R., Larsen, K., Pryor, W., Tian, F.: Water vapor jets inside the plume of gas leaving Enceladus. Nature 456, 477–479 (2008).

    Article  ADS  Google Scholar 

  • Hedman, M.M., Nicholson, P.D., Showalter, M.R., Brown, R.H., Buratti, B.J., Clark R.N.: Spectral observations of the Enceladus plume with Cassini-VIMS. Astron. J. 693, 1749–1762 (2009).

    ADS  Google Scholar 

  • Helfenstein, P., Thomas, P.C., Veverka, J., Burns, J.A., Roatsch, T., Giese, B., Wagner, R., Denk, T., Neukum, G., Turtle, E.P., Perry, J., Bray, V., Rathbun, J., Porco, C.C.: Tectonism and terrain evolution on Enceladus,. Icarus, in press (2009).

    Google Scholar 

  • Hoppa, G.V., Tufts, R., Greenberg, R., Geissler, P.E.: Formation of cy-cloidal features on Europa, Science 285, 1899–1902 (1999).

    Article  ADS  Google Scholar 

  • Howett, C.J.A., Spencer, J.R., Pearl, J.C., Segura, M.: Thermal inertia and bolometric albedo for Mimas, Enceladus, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements. Icarus: doi: 10.1016/j.icarus.2009.07.016 (2009).

    Google Scholar 

  • Hurford, T.A., Helfenstein, P., Hoppa, B.V., Greenberg, R., Bills, B.: Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007).

    Article  ADS  Google Scholar 

  • Hussmann, H., Spohn, T.: Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004).

    Article  ADS  Google Scholar 

  • Ingersoll, A.P., Pankine, A.A.: Models of the Enceladus plumes: Criteria for melting. Icarus, submitted (2009).

    Google Scholar 

  • Jackson I., Faul, U.H., Gerald, J.D.F., Tan B.H.: Shear wave attenuation and dispersion in melt-bearing olivine polycrystals 1. Specimen fabrication and mechanical testing, J. Geophys. Res. 109, B06201 (2004).

    Article  Google Scholar 

  • Jacobson, R.A., and 13 co-authors: The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. As-tron. J. 132, 2520–2526 (2006).

    ADS  Google Scholar 

  • Jaumann, R., and 18 co-authors: Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements. Icarus 193, 407–419 (2008).

    Article  ADS  Google Scholar 

  • Johnson, R.E., Famá, M., Liu, M., Baragiola, R.A., Sittler, E.C., Smith, H.T.: Sputtering of ice grains and icy satellites in Saturn's inner magnetosphere. Planet. Space Sci. 56, 1238–1243 (2008).

    Article  ADS  Google Scholar 

  • Johnson, R.E., Smith, H.T., Tucker, O.J., Liu, M., Burger, M.H., Sittler, E.C., Tokar R. L.: The Enceladus and OH tori at Saturn. Astrophys. J. 644, L137–L139 (2006).

    Article  ADS  Google Scholar 

  • Jones, G.H. and 20 co-authors: Fine jet structure of electrically charged grains in Enceladus's plume. Geophys. Res. Lett., in press (2009).

    Google Scholar 

  • Juhász, A., Horányi, M.: Saturn's E ring: A dynamical approach. J. Geo-phys. Res. 107, 1066 (2002).

    Article  Google Scholar 

  • Juhász, A., Horányi, M., Morfill, G.E.: Signatures of Enceladus in Saturn's E ring. Geophys. Res. Lett. 34, L09104 (2007).

    Article  Google Scholar 

  • Jurac, S., Johnson, R.E., Richardson, J.D.: Saturn's E Ring and production of the neutral torus. Icarus 149, 384–396 (2001).

    Article  ADS  Google Scholar 

  • Jurac, S., Richardson, J.D.: A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. J. Geophys. Res. 110, A09220 (2005).

    Article  Google Scholar 

  • Jurac, S., McGrath, M.A., Johnson, R.E., Richardson, J.D., Vasyliunas, V.M., Eviatar, A.: Saturn: Search for a missing water source. Geo-phys. Res. Lett. 29, 25–1 (2002).

    Google Scholar 

  • Karato, S.: A dislocation model of seismic wave attenuation and micro-creep in the Earth: Harold Jeffreys and the rheology of the solid Earth. Pure Appl. Geophys. 153, 239–256 (1998).

    Article  ADS  Google Scholar 

  • Kargel J. and Pozio, S. (1996) The volcanic and tectonic history of Enceladus. Icarus 119, 385–404.

    Article  ADS  Google Scholar 

  • Kargel, J.S.: Enceladus: Cosmic gymnast, volatile miniworld. Science 311, 1389–1391 (2006).

    Article  ADS  Google Scholar 

  • Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E.: The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus 193, 420–437 (2008).

    Article  ADS  Google Scholar 

  • Khurana, K.K., Dougherty, M.K., Russell, C.T., Leisner, J.S.: Mass loading of Saturn's magnetosphere near Enceladus. J. Geophys. Res. 112, A08203 (2007).

    Article  Google Scholar 

  • Kieffer, S. W.: Dynamics and thermodynamics of volcanic eruptions: Implications for the plumes of Io. In: Morrison, D. (ed.) Satellites of Jupiter, pp. 647–723. Univ. Ariz. Press, Tucson (1982).

    Google Scholar 

  • Kieffer, S., Lu, X., Bethke, C.M., Spencer, J.R., Marshak, S., Navrotsky, A.: A clathrate reservoir hypothesis for Enceladus' south polar plume. Science 314, 1764–1766 (2006).

    Article  ADS  Google Scholar 

  • Kieffer, S.W., Lu, X., McFarquhar, G., Wohletz, K.H.: A redetermina-tion of the ice/vapor ratio of Enceladus' plumes: Implications for sublimation and the lack of a liquid water reservoir. Icarus, submitted (2009).

    Google Scholar 

  • Kirk, R.L., Soderblom, L.A., Brown, R.H., Kieffer, S.W., Kargel, J.S.: Triton's plumes: Discovery, characteristics, and models. In: Cruikshank, D.P. (ed.) Neptune and Triton, pp. 949–989. Univ. Ariz. Press, Tucson (1995).

    Google Scholar 

  • Lazcano, A., Miller, S.L.: How long did it take for life to begin and evolve to cyanobacteria? Journal of Molecular Evolution 39, 546–554 (1994).

    Article  Google Scholar 

  • Lin, L.-H., and 13 co-authors: Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006).

    Article  ADS  Google Scholar 

  • Lissauer, J.J., Peale, S.J., Cuzzi J.N.: Ring torque on Janus and the melting of Enceladus, Icarus 58, 159–168 (1984).

    Article  ADS  Google Scholar 

  • Lissauer, J.J., Squyres, S.W., Hartmann, W.K.: Bombardment history of the Saturn system. J. Geophys. Res. 93, 13776–13804 (1988).

    Article  ADS  Google Scholar 

  • Lunine, J.I., Gautier, D.: Coupled physical and chemical evolution of volatiles in the protoplanetary disk: A tale of three elements. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.), Comets II, pp. 105–113, Univ. Ariz. Press, Tucson (2004).

    Google Scholar 

  • Manga, M., Wang, C.-Y.: Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett. 34, L07202 (2007).

    Article  Google Scholar 

  • Matson, D.L., Castillo, J.C., Lunine, J., Johnson, T.V.: Enceladus' plume: Compositional evidence for a hot interior. Icarus 187569–573 (2007).

    Article  ADS  Google Scholar 

  • Matsuyama, I., Nimmo, F.: Tectonic patterns on reoriented and despun planetary bodies. Icarus 195, 459–473 (2008).

    Article  ADS  Google Scholar 

  • McCollom, T.M.: Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 104, 30,729–30,742 (1999).

    Article  ADS  Google Scholar 

  • McCord, T.B., and 11 co-authors: Salts on Europa's surface detected by Galileo's Near Infrared Mapping Spectrometer. Science 280, 1242 (1998).

    Article  ADS  Google Scholar 

  • McKay, C.P., Porco, C.C., Altheide, T. Davis, W.L., Kral, T.A.: The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8, 909–919 (2008).

    Article  ADS  Google Scholar 

  • McKinnon, W. B.: On convection in ice I shells of outer solar system bodies, with specific application to Callisto. Icarus 183, 435–450 (2006).

    Article  ADS  Google Scholar 

  • Melosh, H.J.: The rocky road to panspermia. Nature 332, 687–688 (1988).

    Article  ADS  Google Scholar 

  • Meyer, J., Wisdom, J.: Tidal heating in Enceladus. Icarus 188, 535–539 (2007).

    Article  ADS  Google Scholar 

  • Meyer, J., Wisdom, J.: Tidal evolution of Mimas, Enceladus, and Dione. Icarus 193, 213–223 (2008).

    Article  ADS  Google Scholar 

  • Miller, D.J., Barnash, A.N., Bray, V.J., Turtle, E. P., Helfenstein, P., Squyres, S. W., Rathbun, J. A.: Interactions between impact craters and tectonic fractures on Enceladus and Dione. Workshop on Ices, Oceans, and Fire: Satellites of the Outer Solar System, held August 13–15, 2007. Boulder, Colorado, LPI Contribution No. 1357, pp. 95–96 (2007).

    Google Scholar 

  • Miller, S.L.: A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).

    Article  ADS  Google Scholar 

  • Mitri, G., Showman, A.P.: A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus, Icarus 195, 758–764 (2008).

    Article  ADS  Google Scholar 

  • Moore, J.M., Schenk, P.M., Bruesch, L.S., Asphaug, E., McKinnon, W.B.: Large impact features on middle-sized icy satellites. Icarus 171, 421–443 (2004).

    Article  ADS  Google Scholar 

  • Mousis, O, Gautier, D., Bockelee-Morvan, D.: An evolutionary turbulent model of Saturn's subnebula: Implications for the origin of the atmosphere of Titan. Icarus 156, 162–175 (2002). doi:10.1016/icar.2001.6782.

    Article  ADS  Google Scholar 

  • Murray, C., Dermott, S.: Solar System Dynamics. Cambridge Univ. Press, Cambridge (1999).

    MATH  Google Scholar 

  • Nash, D.B., Carr, M.H., Gradie, J., Hunten, D.M., Yoder, C.F.: Io. In: Burns J.A., Matthews, M.S. (eds.) Satellites, pp. 629–688. Univ. Ariz. Press, Tucson (1986).

    Google Scholar 

  • Neukum, G.: Cratering records of the satellites of Jupiter and Saturn. Adv. Space Res. 5, 107–116 (1985).

    Article  ADS  Google Scholar 

  • Newman, S.F., Buratti, B.J., Jaumann, R., Bauer, J.M., Momary, T.W.: Hydrogen peroxide on Enceladus. Astrophys. J. 670, L143–L146 (2007).

    Article  ADS  Google Scholar 

  • Newman, S.F., Buratti, B.J., Brown, R.H., Jaumann, R., Bauer, J., Momary, T.: Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini. Icarus 193, 397–406 (2008).

    Article  ADS  Google Scholar 

  • Nicholson, P.D., Showalter, M.R., Dones, L., French, R.G., Larson, S.M., Lissauer, J.J., McGhee, C.A., Sicardy, B., Seitzer, P., Danielson, G.E.: Observations of Saturn's ring plane crossings in August and November 1995. Science 272, 509–515 (1996).

    Article  ADS  Google Scholar 

  • Nimmo, F., Pappalardo, R.T.: Diapir-induced reorientation of Saturn's moon Enceladus. Nature 441, 614–616 (2006).

    Article  ADS  Google Scholar 

  • Nimmo, F., Gaidos E.: Thermal consequences of strike-slip motion on Europa. J. Geophys. Res. 107, 5021 (2002).

    Article  Google Scholar 

  • Nimmo, F., Spencer, J.R., Pappalardo, R.T., Mullen, M.E.: Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007).

    Article  ADS  Google Scholar 

  • Ojakangas, G.W., Stevenson, D.J.: Thermal state of an ice shell on Eu-ropa. Icarus 81, 220–241 (1989).

    Article  ADS  Google Scholar 

  • Ojakangas, G.W., Stevenson, D.J.: Episodic volcanism of tidally-heated satellites with application to Io. Icarus 66, 341–358 (1986).

    Article  ADS  Google Scholar 

  • Orgel, L.E.: The origin of life – how long did it take? Origins Life Evol. Biosphere. 28, 91–96 (1998).

    Article  Google Scholar 

  • Pang, K.D., Voge, C.C., Rhoads, J.W., Ajello, J.M.: The E ring of Saturn and satellite Enceladus. J. Geophys. Res. 89, 9459–9470 (1984).

    Article  ADS  Google Scholar 

  • Pappalardo, R.T., Barr A.C., The origin of domes on Europa: The role of thermally induced compositional diapirism. Geophys. Res. Lett. 31, L01701 (2004).

    Article  Google Scholar 

  • Parkinson, C.D., Liang, M.-C., Hartman, H., Hansen, C.J., Tinetti, G., Meadows, V., Kirschvink, J.L., Yung Y.L.: Enceladus: Cassini observations and implications for the search for life. Astron. Astro-phys. 463, 353–357 (2007).

    ADS  Google Scholar 

  • Parkinson, C.D., Liang, M.-C., Yung, Y.L., Kirschvink, J.L.: Habitabil-ity of Enceladus: Planetary conditions for life. Origins Life Evol. Biospheres (2008). doi:10.1007/s11084-008-9135-4.

    Google Scholar 

  • Passey, Q.: Viscosity of the lithosphere of Enceladus. Icarus 53, 105–120 (1983).

    Article  ADS  Google Scholar 

  • Peale S.J., Cassen P.: Contribution of tidal dissipation to lunar tidal history, Icarus 36, 245–269 (1978).

    Article  ADS  Google Scholar 

  • Plescia, J.B., Boyce, J.M.: Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion. Nature 301, 666–670 (1983).

    Article  ADS  Google Scholar 

  • Porco, C. C., and 24 co-authors: Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006).

    Article  ADS  Google Scholar 

  • Postberg, F., Kempf, S., Hillier, J.K., Srama, R., Green, S.F., McBride, N., Grün, E.: The E-ring in the vicinity of Enceladus II. Probing the moon's interior—The composition of E-ring particles. Icarus 193, 438–454 (2008).

    Article  ADS  Google Scholar 

  • Postberg, F., Kempf, S., Schmidt, J., Brillantov, N., Beinsen, A., Abel, B., Buck, U., Srama, R.: Sodium salts in E Ring ice grains from an ocean below Enceladus' surface. Nature 459, 1098–1101 (2009).

    Article  ADS  Google Scholar 

  • Rappaport, N.J., Iess, L., Tortora, P., Anabtawi, A., Asmar, S., Somenzi, L., Zingoni, F.: Mass and interior of Enceladus from Cassini data analysis, Icarus 190, 175–178 (2007).

    Article  ADS  Google Scholar 

  • Razzaghi, A., Di Pietro, D., Simon-Miller, A., Spencer, J.: Ence-ladus Flagship Mission Concept Study. NASA-Goddard Spaceflight Center, http://www.lpi.usra.edu/opag/Enceladus_Public_Report.pdf (2007). Accessed 9 April 2009.

  • Reh, K., Elliot, J., Spilker, T., Jorgensen, E., Spencer, J., Lorenz, R.: Titan and Enceladus $1B mission feasibility study report. JPL D-37401B (2007).

    Google Scholar 

  • Roatsch, T., Wählisch, M., Giese, B., Hoffmeister, A., Matz, K.-D., Scholten, F., Kuhn, A., Wagner, R., Neukum, G., Helfenstein, P., Porco, C.: High-resolution Enceladus atlas derived from Cassini-ISS images. Planet. Space Sci. 56, 109–116 (2008).

    Article  ADS  Google Scholar 

  • Roberts, J.H., Nimmo F.: Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 194, 675–689 (2008a).

    Article  ADS  Google Scholar 

  • Roberts, J.H., Nimmo F.: Near-surface heating on Enceladus and the south polar thermal anomaly. Geophys. Res. Lett. 35L09201 (2008b).

    Article  Google Scholar 

  • Roddier, C., Roddier, F., Graves, J.E., Northcott M.: Discovery of an arc of particles near Enceladus' orbit: A possible key to the origin of the E ring. Icarus 136, 50–59 (1998).

    Article  ADS  Google Scholar 

  • Ross, M., Schubert, G.: Tidal dissipation in a viscoelastic planet. Proc. 16th Lunar Planet Sci. Conf. Pt 2, J. Geophys Res. 91, D447–D452 (1986).

    Article  ADS  Google Scholar 

  • Ross, M.N., Schubert, G.: Viscoelastic models of tidal heating in Ence-ladus, Icarus 78, 90–101 (1989).

    Article  ADS  Google Scholar 

  • Rudolph, M.L., Manga, M.: Fracture penetration in planetary ice shells. Icarus 199, 536–541 (2009).

    Article  ADS  Google Scholar 

  • Saur, J., Schilling, N., Neubauer, F.M., Strobel, D.F., Simon, S., Dougherty, M.K., Russell, C.T., Pappalardo, R.T.: Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophys. Res. Lett. 35, 20105 (2008).

    Article  ADS  Google Scholar 

  • Schmidt, J., Brilliantov, N., Spahn, F., Kempf, S.: Slow dust in Ence-ladus' plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685–688 (2008).

    Article  ADS  Google Scholar 

  • Schneider, N.M., Burger, M.H., Schaller, E.L., Brown, M.E., Johnson, R.E., Kargel, J.S., Dougherty, M., Achilleos N.: No sodium in Ence-ladus' vapor plumes. Nature 459, 1102–1104 (2009).

    Article  ADS  Google Scholar 

  • Schubert, G., Anderson, J.D., Travis, B.J., Palguta, J.: Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188, 345–355 (2007).

    Article  ADS  Google Scholar 

  • Segatz, M.T., Spohn, T., Ross, M.N., Schubert G.: Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75, 187–206 (1988).

    Article  ADS  Google Scholar 

  • Shemansky, D.E., Matheson, P., Hall, D.T., Hu, H.-Y., Tripp, T.M.: Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363, 329–331 (1993).

    Article  ADS  Google Scholar 

  • Shock, E.L.: Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins Life Evol Biosphere 20, 331–367 (1990).

    Article  ADS  Google Scholar 

  • Showalter, M.R., Cuzzi, J.N., Larson, S.M.: Structure and particle properties of Saturn's E Ring. Icarus 94, 451–473 (1991).

    Article  ADS  Google Scholar 

  • Showman A.P., Stevenson, D.J., Malhotra, R.: Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997).

    Article  ADS  Google Scholar 

  • Showman, A.P., Han, L.J.: Effects of plasticity on convection in an ice shell: Implications for Europa. Icarus 177, 425–437 (2005).

    Article  ADS  Google Scholar 

  • Smith, B.A., and 28 co-authors: A new look at the Saturn system: The Voyager 2 images, Science 215, 504–537 (1982).

    Article  ADS  Google Scholar 

  • Smith, H.T., Shappirio, M., Johnson, R.E., Reisenfeld, D., Sittler, E.C., Crary, F.J., McComas, D.J., Young, D.T.: Enceladus: The likely dominant nitrogen source in Saturn's magnetosphere. Icarus 188, 356–366 (2008a).

    Article  ADS  Google Scholar 

  • Smith, H.T., Shappirio, M., Johnson, R.E., Reisenfeld, D., Sittler, E.C., Crary, F.J., McComas, D.J., Young, D.T.: Enceladus: A potential source of ammonia products and molecular nitrogen for Saturn's magnetosphere. J. Geophys. Res. 113, A11206 (2008b).

    Article  ADS  Google Scholar 

  • Smith-Konter, B., Pappalardo R.T.: Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus 198, 435–451 (2008).

    Article  ADS  Google Scholar 

  • Solomatov, V.S., Barr A.C.: Onset of convection in fluids with strongly temperature-dependent, power-law viscosity 2. Dependence on the initial perturbation. Phys. Earth and Planet. Int. 165, 1–13 (2007).

    Article  ADS  Google Scholar 

  • Sotin, C., Head, J.W., Tobie G.: Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting. Geophys. Res. Lett. 29, 1233 (2002).

    Article  ADS  Google Scholar 

  • Spahn, F. and 15 co-authors: Cassini dust measurements at Ence-ladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006a).

    Article  ADS  Google Scholar 

  • Spahn, F. Albers, N., Hörning, M., Kempf, S., Krivov, A.V., Makuch, M., Schmidt, J., Seiß, M., Miodrag, S.: E ring dust sources: Implications from Cassini's dust measurements. Planet. Space Sci. 54, 1024–1032 (2006b).

    Article  ADS  Google Scholar 

  • Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C.: Cassini Encounters Enceladus: Background and the discovery of a south polar hot spot, Science 311, 1401–1405 (2006).

    Article  ADS  Google Scholar 

  • Spitale, J.N., Porco, C.C.: Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature 449, 695–697 (2007).

    Article  ADS  Google Scholar 

  • Squyres, S.W., Reynolds, R.T., Cassen P.M., Peale, S.J.: The evolution of Enceladus, Icarus 53, 319–331 (1983).

    Article  ADS  Google Scholar 

  • Stevens, T.O., McKinley J.P.: Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).

    Article  ADS  Google Scholar 

  • Thomas, P.C. Burns, J.A., Helfenstein, P., Squyres, S., Veverka, J., Porco, C., Turtle, E.P., McEwen, A., Denk, T., Giese, B., Roatsch, T., Johnson, T.V., Jacobson, R.A.: Shapes of the Saturnian icy satellites and their significance. Icarus 190, 573–584 (2007).

    Article  ADS  Google Scholar 

  • Tian, F., Stewart, A.I.F., Toon, O.B., Larsen, K.W., Esposito, L.W.: Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus 188, 154–161 (2007).

    Article  ADS  Google Scholar 

  • Tice, M.M., Lowe, D.R.: Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004).

    Article  ADS  Google Scholar 

  • Tobie, G., Mocquet, A., Sotin, C.: Tidal dissipation within large icy satellites: Applications to Europa and Titan. Icarus 177, 534–549 (2005).

    Article  ADS  Google Scholar 

  • Tobie, G., Cadek, O., Sotin, C.: Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus, Icarus 196, 642–652 (2008). doi:10.1016/j.icarus.2008.03.008.

    Article  ADS  Google Scholar 

  • Tyler, R. H.: Strong ocean tidal flow and heating on moons of the outer planets. Nature 456, 770–772 (2008).

    Article  ADS  Google Scholar 

  • Verbiscer, A.J., French, R.G., McGhee, C.A.: The opposition surge of Enceladus: HST observations 338–1022nm. Icarus 173, 66–83 (2005).

    Article  ADS  Google Scholar 

  • Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfen-stein, P., Nelson, M.J. Smith, J.D., Wilson J. C.: Near-infrared spectra of the leading and trailing hemispheres of Enceladus. Icarus 182, 211–223 (2006).

    Article  ADS  Google Scholar 

  • Verbiscer, A., French, R., Showalter, M., Helfenstein, P.: Ence-ladus: Cosmic graffiti artist caught in the act. Science 315, 815 (2007).

    Article  ADS  Google Scholar 

  • Wächtershäuser, G.: The case for the chemoautotrophic origin of life in an iron-sulfur world. Origins Life Evol. Biosphere 20,173–176 (1990).

    Article  Google Scholar 

  • Waite, J. H., and 16 co-authors: Ammonia, radiogenic Ar, organics, and deuterium measured in the plume of Saturn's icy moon Enceladus. Nature 460, 487–490 (2009).

    Article  ADS  Google Scholar 

  • Waite, J. H., and 13 co-authors: Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006).

    Article  ADS  Google Scholar 

  • Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., Macdonald, F.A., Wikswo J.P.: A low temperature transfer of ALH84001 from Mars to Earth. Science 290, 791–795 (2000).

    Article  ADS  Google Scholar 

  • Wisdom, J.: Spin-orbit secondary resonance dynamics of Enceladus. Astron. J. 128, 484–491 (2004).

    Article  ADS  Google Scholar 

  • Zahnle, K., Schenk, P., Levison, H., Dones L.: Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).

    Article  ADS  Google Scholar 

  • Zolotov, M. Y.: An oceanic composition on early and today's Enceladus, Geophys. Res. Lett. 34, L23203 (2007). doi:10. 1029/2007GL031234.

    Article  ADS  Google Scholar 

  • Zschau, J. Tidal friction in the solid Earth: Loading tides versus body tides. In: Brosche P., Sundermann, J. (eds.) Tidal Friction and the Earth's Rotation. Springer, Berlin (1978).

    Google Scholar 

Download references

Acknowledgments

We wish to thank everyone who has made these discoveries possible, by contributing to the success of the Cassini/Huygens project. This work was funded by the Cassini Project and by NASA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Spencer, J.R. et al. (2009). Enceladus: An Active Cryovolcanic Satellite. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds) Saturn from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9217-6_21

Download citation

Publish with us

Policies and ethics