Skip to main content
Log in

Anti-Hypertensive Drugs Moderate the Relationship of Blood Pressure with Alzheimer’s Pathologies and Neurodegenerative Markers in Non-Demented Hypertensive Older Adults

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

We aimed to explore whether the relationships of blood pressures (BPs) with Alzheimer’s disease (AD) endophenotypes varied by usage of antihypertensive drugs (AHDs).

Methods

A total of 765 non-demented older adults (mean age: 74.4 years; female: 43.1%) with a self-reported history of hypertension were followed for 6 years. Multiple linear regression and linear-mixed effect models were used to investigate the interaction effects of five categories of AHDs (angiotensin-converting enzyme inhibitors [ACEI], angiotensin II receptor blockers [ARBs], β-blocker, calcium channel blockers [CCB], diuretic) with BPs (systolic blood pressure [SBP], diastolic blood pressure [DBP], and pulse pressure [PP]) on AD core pathology and neurodegenerative markers.

Results

After Bonferroni correction, significant interaction effects of BPs with AHDs were observed. Elevated SBP or PP in late-life was associated with higher levels of cerebral Aβ burden (diuretic alone/β-blocker × SBP), higher levels of CSF tau proteins (diuretic × SBP/PR ARBs/CCB × SBP), and lower volume of entorhinal region (β-blocker × SBP, diuretic × PP) only among hypertensive patients who received no antihypertensive treatments, while these associations became compromised or null for users of specific AHDs except for ACEI. Compared to taking other classes of AHDs, elevated SBP in late-life was associated with lower cerebral Aβ burden in diuretic users (padjusted = 0.08) and was associated with higher CSF tau proteins in ACEI alone users (padjusted = 0.03). Longitudinal data validated the above-mentioned interaction effects on changes of cerebral Aβ burden (padjusted < 0.05), CSF tau proteins (padjusted < 0.10), and brain atrophy (padjusted < 0.05).

Conclusions

The relationships of late-life BP with AD pathology and neurodegeneration could be modified by antihypertensive treatments and varied by AHD classification. These findings provide preliminary evidence for tailored BP management strategy for preventing AD among late-life hypertensive adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Availability of data and materials: All data are available upon reasonable request or can be obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Abbreviations

AD:

Alzheimer’s disease

AHDs:

Antihypertensive drugs

ACEI:

Angiotensin-converting enzyme inhibitors

ARBs:

Angiotensin II receptor blockers

CCB:

Calcium channel blockers

BP:

Blood pressure

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

PP:

Pulse pressure

Aβ:

β-Amyloid

T-tau:

Total tau

P-tau:

Phosphorylated tau

CSF:

Cerebrospinal fluid

ADNI:

Alzheimer’s Disease Neuroimaging Initiative

AV45-PET:

18F-florbetapir-positron emission tomography

MRI:

Magnetic resonance imaging

EC:

Entorhinal cortex

APOE ε4:

Apolipoprotein E4

SD:

Standard deviation

MLR:

Multiple linear regression

LME:

Linear mixed-effects

MR:

Magnetic resonance.

References

  1. Realdon O, Rossetto F, Nalin M, Baroni I, Cabinio M, Fioravanti R, Saibene FL, Alberoni M, Mantovani F, Romano M et al: Technology-enhanced multi-domain at home continuum of care program with respect to usual care for people with cognitive impairment: the Ability-TelerehABILITation study protocol for a randomized controlled trial. BMC Psychiatry 2016, 16(1):425.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Soria Lopez JA, González HM, Léger GC: Alzheimer’s disease. Handb Clin Neurol 2019, 167:231–255.

    PubMed  Google Scholar 

  3. Chetelat G, Baron JC: Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 2003, 18(2):525–541.

    PubMed  Google Scholar 

  4. Jack CR, Jr.: Medial temporal lobe volumetrics in traumatic brain injury. AJNR Am J Neuroradiol 1997, 18(1):25–28.

    PubMed  PubMed Central  Google Scholar 

  5. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C et al: Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet (London, England) 2020, 396(10248):413–446.

    PubMed  Google Scholar 

  6. Hu H, Meng L, Bi YL, Zhang W, Xu W, Shen XN, Ou YN, Ma YH, Dong Q, Tan L et al: Tau pathologies mediate the association of blood pressure with cognitive impairment in adults without dementia: The CABLE study. Alzheimers Dement 2022, 18(1):53–64.

    CAS  PubMed  Google Scholar 

  7. Ou YN, Tan CC, Shen XN, Xu W, Hou XH, Dong Q, Tan L, Yu JT: Blood Pressure and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 209 Prospective Studies. Hypertension 2020, 76(1):217–225.

    CAS  PubMed  Google Scholar 

  8. Sible IJ, Nation DA: Visit-to-Visit Blood Pressure Variability and CSF Alzheimer Disease Biomarkers in Cognitively Unimpaired and Mildly Impaired Older Adults. Neurology 2022, 98(24):e2446–e2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding J, Davis-Plourde KL, Sedaghat S, Tully PJ, Wang W, Phillips C, Pase MP, Himali JJ, Gwen Windham B, Griswold M et al: Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol 2020, 19(1):61–70.

    CAS  PubMed  Google Scholar 

  10. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, Waldman A, Walton I, Poulter R, Ma S et al: Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol 2008, 7(8):683–689.

    CAS  PubMed  Google Scholar 

  11. Skoog I: Antihypertensive treatment and dementia prevention. Lancet Neurol 2008, 7(8):664–665.

    PubMed  Google Scholar 

  12. Peters R, Yasar S, Anderson CS, Andrews S, Antikainen R, Arima H, Beckett N, Beer JC, Bertens AS, Booth A et al: Investigation of antihypertensive class, dementia, and cognitive decline: A meta-analysis. Neurology 2020, 94(3):e267–e281.

    PubMed  PubMed Central  Google Scholar 

  13. Sible IJ, Yew B, Dutt S, Bangen KJ, Li Y, Nation DA: Vi sit-to-vi sit blood pressure variability and regional cerebral perfusion decline in older adults. Neurobiology of aging 2021, 105:57–63.

    PubMed  PubMed Central  Google Scholar 

  14. Suárez-Calvet M, Capell A, Araque Caballero M, Morenas-Rodríguez E, Feilerer K, Franzmeier N, Kleinberger G, Eren E, Deining Y, Piccio L et al: CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, ne uro degeneration and cognitive decline. EMBO Mol Med 2018, 10(12).

    Google Scholar 

  15. Sarazin M, Chauviré V, Gerardin E, Colliot O, Kinkingnéhun S, de Souza LC, Hugonot-Diener L, Garnero L, Lehéricy S, Chupin M et al: The amnestic syndrome of hippocampal type in Alzheimer’s disease: an MRI study. J Alzheimers Dis 2010, 22(1):285–294.

    PubMed  Google Scholar 

  16. Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, Shaw LM, Trojanowski JQ, Potkin SG, Huentelman MJ et al: Genome-wide association study of CSF biomarkers Abetal-42, t-tau, and p-taul81p in the ADNI cohort. Neurology 2011, 76(1):69–79.

    CAS  PubMed  Google Scholar 

  17. Gibbons RD, Hedeker D, DuToit S: Advances in analysis of longitudinal data. Annu Rev Clin Psychol 2010, 6:79–107.

    PubMed  PubMed Central  Google Scholar 

  18. van Dalen JW, Brayne C, Crane PK, Fratiglioni L, Larson EB, Lobo A, Lobo E, Marcum ZA, Moll van Charante EP, Qiu C et al: Association of Systolic Blood Pressure With Dementia Risk and the Role of Age, U-Shaped Associations, and Mortality. JAMA Intern Med 2022, 182(2):142–152.

    PubMed  Google Scholar 

  19. Pasquier F, Leys D: Why are stroke patients prone to develop dementia? J Neurol 1997, 244(3):135–142.

    CAS  PubMed  Google Scholar 

  20. Hardy JA, Mann DM, Wester P, Winblad B: An integrative hypothesis concerning the pathogenesis and progression of Alzheimer’s disease. Neurobiol Aging 1986, 7(6):489–502.

    CAS  PubMed  Google Scholar 

  21. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, Xu H, Zhang YW: Hypoxia-inducible factor lalpha (HIF-lalpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 2007, 282(15):10873–10880.

    CAS  PubMed  Google Scholar 

  22. Kishi T, Hirooka Y, Sunagawa K: Telmisartan protects against cognitive decline via up-regulation of brain-derived neurotrophic factor/tropomyosin-related kinase B in hippocampus of hypertensive rats. J Cardiol 2012, 60(6):489–494.

    PubMed  Google Scholar 

  23. McCabe RD, Bakarich MA, Srivastava K, Young DB: Potassium inhibits free radical formation. Hypertension 1994, 24(1):77–82.

    CAS  PubMed  Google Scholar 

  24. Ishimitsu T, Tobian L, Sugimoto K, Everson T: High potassium diets reduce vascular and plasma lipid peroxides in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 1996, 18(5):659–673.

    CAS  PubMed  Google Scholar 

  25. Young DB, Ma G: Vascular protective effects of potassium. Semin Nephrol 1999, 19(5):477–486.

    CAS  PubMed  Google Scholar 

  26. Chen WT, Brace RA, Scott JB, Anderson DK, Haddy FJ: The mechanism of the vasodilator action of potassium. Proc Soc Exp Biol Med 1972, 140(3):820–824.

    CAS  PubMed  Google Scholar 

  27. Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, White LR: Antihypertensive medication use and risk of cognitive impairment: the Honolulu-Asia Aging Study. Neurology 2013, 81(10):888–895.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakurai-Yamashita Y, Harada N, Niwa M: Lercanidipine rescues hippocampus pyramidal neurons from mild ischemia-induced delayed neuronal death in SHRSP. Cell Mol Neurobiol 2011, 31(4):561–567.

    CAS  PubMed  Google Scholar 

  29. Zhang XL, Zheng SL, Dong FR, Wang ZM: Nimodipine improves regional cerebral blood flow and suppresses inflammatory factors in the hippocampus of rats with vascular dementia. J Int Med Res 2012, 40(3):1036–1045.

    PubMed  Google Scholar 

  30. Wang J, Zhao Z, Lin E, Zhao W, Ojan X, Freire D, Bilski AE, Cheng A, Vempati P, Ho L et al: Unintended effects of cardiovascular drugs on the pathogenesis of Alzheimer’s disease. PLoS One 2013, 8(6):e65232.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gholamipour-Badie H, Naderi N, Khodagholi F, Shaerzadeh F, Motamedi F: L-type calcium channel blockade alleviates molecular and reversal spatial learning and memory alterations induced by entorhinal amyloid pathology in rats. Behav Brain Res 2013, 237:190–199.

    CAS  PubMed  Google Scholar 

  32. Daschil N, Kniewallner KM, Obermair GJ, Hutter-Paier B, Windisch M, Marksteiner J, Humpel C: L-type calcium channel blockers and substance P induce angiogenesis of cortical vessels associated with beta-amyloid plaques in an Alzheimer mouse model. Neurobiol Aging 2015, 36(3):1333–1341.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gulati P, Muthuraman A, Kaur P: Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Pharmacol Biochem Behav 2015, 131:26–32.

    CAS  PubMed  Google Scholar 

  34. Omote Y, Deguchi K, Kono S, Liu W, Kurata T, Hishikawa N, Yamashita T, Ikeda Y, Abe K: Synergistic neuroprotective effects of combined treatment with olmesartan plus azelnidipine in stroke-prone spontaneously hypertensive rats. J Neurosd Res 2014, 92(10):1330–1337.

    CAS  Google Scholar 

  35. Kume K, Hanyu H, Sakurai H, Takada Y, Onuma T, Iwamoto T: Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer’s disease. Geriatr Gerontol Int 2012, 12(2):207–214.

    PubMed  Google Scholar 

  36. Justin A, Sathishkumar M, Sudheer A, Shanthakumari S, Ramanathan M: Non-hypotensive dose of telmisartan and nimodipine produced synergistic neuroprotective effect in cerebral ischemic model by attenuating brain cytokine levels. Pharmacol Biochem Behav 2014, 122:61–73.

    CAS  PubMed  Google Scholar 

  37. Zhai Y, Yamashita T, Kurata T, Fukui Y, Sato K, Kono S, Liu W, Omote Y, Hishikawa N, Deguchi K et al: Strong reduction of low-density lipoprotein receptor/apolipoprotein E expressions by telmisartan in cerebral cortex and hippocampus of stroke resistant spontaneously hypertensive rats. J Stroke Cerebrovasc Dis 2014, 23(9):2350–2361.

    PubMed  Google Scholar 

  38. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM: Abnormal regional cerebral blood flow in cognitively normal elderly subjects with hypertension. Stroke 2008, 39(2):349–354.

    PubMed  PubMed Central  Google Scholar 

  39. Cohen RA: Hypertension and cerebral blood flow: implications for the development of vascular cognitive impairment in the elderly. Stroke 2007, 38(6):1715–1717.

    PubMed  Google Scholar 

  40. Muller M, van der Graaf Y, Visseren FL, Vlek AL, Mali WP, Geerlings MI: Blood pressure, cerebral blood flow, and brain volumes. The SMART-MR study. J Hypertens 2010, 28(7):1498–1505.

    CAS  PubMed  Google Scholar 

  41. de la Torre JC: Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer’s pathogenesis. Neurobiol Aging 2000, 21(2):331–342.

    CAS  PubMed  Google Scholar 

  42. Beauchet O, Herrmann FR, Annweiler C, Kerlerouch J, Gosse P, Pichot V, Celle S, Roche F, Barthelemy JC: Association between ambulatory 24-hour blood pressure levels and cognitive performance: a cross-sectional elderly population-based study. Rejuvenation Res 2010, 13(1):39–46.

    PubMed  Google Scholar 

  43. Zhao W, Wang J, Ho L, Ono K, Teplow DB, Pasinetti GM: Identification of antihypertensive drugs which inhibit amyloid-beta protein oligomerization. J Alzheimers Dis 2009, 16(1):49–57.

    CAS  PubMed  Google Scholar 

  44. Khachaturian AS, Zandi PP, Lyketsos CG, Hayden KM, Skoog I, Norton MC, Tschanz JT, Mayer LS, Welsh-Bohmer KA, Breitner JC: Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol 2006, 63(5):686–692.

    PubMed  Google Scholar 

  45. Dobarro M, Gerenu G, Ramirez MJ: Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer’s transgenic mice. Int J Neuropsychopharmacol 2013, 16(10):2245–2257.

    CAS  PubMed  Google Scholar 

  46. Forette F, Seux ML, Staessen JA, Thijs L, Birkenhäger WH, Babarskiene MR, Babeanu S, Bossini A, Gil-Extremera B, Girerd X et al: Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 1998, 352(9137):1347–1351.

    CAS  PubMed  Google Scholar 

  47. Lopez A, Birks J: Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev 2001(1):Cd000147.

  48. de Jong DLK, de Heus RAA, Rijpma A, Donders R, Olde Rikkert M GM, Günther M, Lawlor BA, van Osch MJP, Ciaassen J: Effects of Nilvadipine on Cerebral Blood Flow in Patients With Alzheimer Disease. Hypertension 2019, 74(2):413–420.

    CAS  PubMed  Google Scholar 

  49. Chiu WC, Ho WC, Lin MH, Lee HH, Yeh YC, Wang JD, Chen PC: Angiotension receptor blockers reduce the risk of dementia. J Hypertens 2014, 32(4):938–947.

    CAS  PubMed  Google Scholar 

  50. Hsu CY, Huang CC, Chan WL, Huang PH, Chiang CH, Chen TJ, Chung CM, Lin SJ, Chen JW, Leu HB: Angiotensin-receptor blockers and risk of Alzheimer’s disease in hypertension population—a nationwide cohort study. Cire J 2013, 77(2):405–410.

    Google Scholar 

  51. Kehoe PG, Davies NM, Martin RM, Ben-Shlomo Y: Associations of angiotensin targeting antihypertensive drugs with mortality and hospitalization in primary care patients with dementia. J Alzheimers Dis 2013, 33(4):999–1008.

    PubMed  Google Scholar 

  52. Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, Wolozin B: Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. Bmj 2010, 340:b5465.

    PubMed  PubMed Central  Google Scholar 

  53. Hemming ML, Selkoe DJ: Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. The Journal of biological chemistry 2005, 280(45):37644–37650.

    CAS  PubMed  Google Scholar 

  54. Jalkute CB, Barage SH, Dhanavade MJ, Sonawane KD: Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide. The protein journal 2013, 32(5):356–364.

    CAS  PubMed  Google Scholar 

  55. Iadecola C, Yaffe K, Biller J, Bratzke LC, Farad FM, Gorelick PB, Gulati M, Kamel H, Knopman DS, Launer LJ et al: Impact of Hypertension on Cognitive Function: A Scientific Statement From the American Heart Association. Hypertension (Dallas, Tex: 1979) 2016, 68(6):e67–e94.

    CAS  PubMed  Google Scholar 

  56. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D et al: Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011, 42(9):2672–2713.

    PubMed  PubMed Central  Google Scholar 

  57. Qiu WW, Lai A, Mon T, Mwamburi M, Taylor W, Rosenzweig J, Kowall N, Stern R, Zhu H, Steffens DC: Angiotensin converting enzyme inhibitors and Alzheimer disease in the presence of the apolipoprotein E4 allele. Am J Geriatr Psychiatry 2014, 22(2):177–185.

    PubMed  Google Scholar 

  58. Jouquey S, Mathieu MN, Hamon G, Chevillard C: Effect of chronic treatment with trandolapril or enalapril on brain ACE activity in spontaneously hypertensive rats. Neuropharmacology 1995, 34(12):1689–1692.

    CAS  PubMed  Google Scholar 

  59. Tan J, Wang JM, Leenen FH: Inhibition of brain angiotensin-converting enzyme by peripheral administration of trandolapril versus lisinopril in Wistar rats. Am J Hypertens 2005, 18(2 Pt 1):158–164.

    CAS  PubMed  Google Scholar 

  60. Sink KM, Leng X, Williamson J, Kritchevsky SB, Yaffe K, Kuller L, Yasar S, Atkinson H, Robbins M, Psaty B et al: Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med 2009, 169(13): 1195–1202.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Qiu WQ, Mwamburi M, Besser LM, Zhu H, Li H, Wallack M, Phillips L, Ojao L, Budson AE, Stern R et al: Angiotensin converting enzyme inhibitors and the reduced risk of Alzheimer’s disease in the absence of apolipoprotein E4 allele. J Alzheimers Dis 2013, 37(2):421–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson ML, Parikh N, Kunik ME, Schulz PE, Patel JG, Chen H, Aparasu RR, Morgan RO: Antihypertensive drug use and the risk of dementia in patients with diabetes mellitus. Alzheimers Dement 2012, 8(5):437–444.

    CAS  PubMed  Google Scholar 

  63. Soto ME, van Kan GA, Nourhashemi F, Gillette-Guyonnet S, Cesari M, Cantet C, Rolland Y, Vellas B: Angiotensin-converting enzyme inhibitors and Alzheimer’s disease progression in older adults: results from the Réseau sur la Maladie d’Alzheimer Français cohort. J Am Geriatr Soc 2013, 61(9):1482–1488.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank contributors, including the staff at Alzheimer’s Disease Centers who collected samples used in this study, patients, and their families whose help and participation made this work possible. Data collection and sharing for this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abb Vie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; Euroimmun; E Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Funding

Funding: This study was supported by grants from the National Natural Science Foundation of China (82001136) and Tai-Shan Scholar Project.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Authors’ contributions: Dr. W X: conceptualization and design of the study, revision of the manuscript. Y G: analysis of data, drafting and revision of the manuscript, and prepared all the figures. C-C T, M-S T, and L T,: revision of the manuscript.

Corresponding author

Correspondence to W. Xu.

Ethics declarations

Ethical Approval: The ADNI was approved by institutional review boards of all participating institutions, and written informed consent was obtained from all participants according to the Declaration of Helsinki.

Competing interests: The authors declare that they have no competing interests.

Additional information

The data used in preparation for this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc. edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and / or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.lord.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Tan, CC., Tan, M.S. et al. Anti-Hypertensive Drugs Moderate the Relationship of Blood Pressure with Alzheimer’s Pathologies and Neurodegenerative Markers in Non-Demented Hypertensive Older Adults. J Prev Alzheimers Dis 11, 672–683 (2024). https://doi.org/10.14283/jpad.2024.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2024.40

Key words

Navigation