Skip to main content
Log in

The high-temperature superconductivity in cuprates

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

We discuss the high-temperature superconductivity in copper oxide ceramics. We propose an effective Hamiltonian to describe the dynamics of electrons or holes injected into the copper oxide layers. We show that our approach is able to account for both the pseudogap and the superconductivity gap. For the hole-doped cuprates we discuss in details the underdoped, optimal doped, and over-doped regions of the phase diagram. In the underdoped region we determine the doping dependence of the upper critical magnetic field, the vortex region, and the discrete states bounded to the core of isolated vortices. We explain the origin of the Fermi arcs and Fermi pockets. Moreover, we discuss the recently reported peculiar dependence of the specific heat on the applied magnetic field. We determine the critical doping where the pseudogap vanishes. We find that in the overdoped region the superconducting transition is described by the conventional d-wave BCS theory. We discuss the optimal doping region and the crossover between the underdoped region and the overdoped region. We also discuss briefly the electron-doped cuprate superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bednorz J. G. and Müller K. A., Z. Phys. B, 64 (1986) 189.

    Article  ADS  Google Scholar 

  2. Damascelli A., Hussain Z. and Shen Z. X., Rev. Mod. Phys., 75 (2003) 473.

    Article  ADS  Google Scholar 

  3. Deutscher G., Rev. Mod. Phys., 77 (2005) 109.

    Article  ADS  Google Scholar 

  4. Besov D. N. and Timusk T., Rev. Mod. Phys., 77 (2005) 721.

    Article  ADS  Google Scholar 

  5. Lee P. A., Nagaosa N. and Wen X.-G., Rev. Mod. Phys., 78 (2006) 17.

    Article  ADS  Google Scholar 

  6. Fischer Ø., Kugler H., Maggio-Aprile I. and Berthod C., Rev. Mod. Phys., 79 (2007) 353.

    Article  ADS  Google Scholar 

  7. Lee P. A., Rep. Prog. Phys., 71 (2008) 012501.

    Article  ADS  Google Scholar 

  8. Hüfner S., Hossain M. A., Damascelli A. and Sarvatzky G. A., Rep. Prog. Phys., 71 (2008) 062501.

    Article  ADS  Google Scholar 

  9. Sebastian S. E., Harrison N. and Lonzarich G. G., Rep. Prog. Phys., 75 (2012) 102501.

    Article  ADS  Google Scholar 

  10. Anderson P. W., Science, 235 (1987) 1196.

    Article  ADS  Google Scholar 

  11. Anderson P. W., The Theory of Superconductivity in the High-Tc Cuprates (Princeton University Press, Princeton, New Jersey) 1997.

    Google Scholar 

  12. Anderson P. W., Phys. Rev., 115 (1959) 2.

    Article  ADS  MathSciNet  Google Scholar 

  13. Bonn D. A., Nat. Phys., 2 (2006) 159.

    Article  Google Scholar 

  14. Niedermayer Ch. et al., Phys. Rev. Lett., 80 (1998) 3843.

    Article  ADS  Google Scholar 

  15. Cheong S.-W. et al., Phys. Rev. Lett., 67 (1991) 1791.

    Article  ADS  Google Scholar 

  16. Mason T. E., Aeppli G. and Mook H. A., Phys. Rev. Lett., 68 (1982) 1414.

    Article  ADS  Google Scholar 

  17. Lavrov A. N., Kozeeva L. P., Trunin M. R. and Zverev V. N., Phys. Rev. B, 79 (2009) 214523.

    Article  ADS  Google Scholar 

  18. Bardeen J., Cooper L. N. and Schrieffer J. R., Phys. Rev., 106 (1957) 162; Phys. Rev., 108 (1957) 1175.

    Article  ADS  MathSciNet  Google Scholar 

  19. Armitage N. P., Fournier P. and Greene R. L., Rev. Mod. Phys., 82 (2010) 2421.

    Article  ADS  Google Scholar 

  20. Balachandran A. P., Ercolessi E. and Morandi G., Hubbard Model and Anyon Superconductivity (World Scientific Publishing Co. Inc.) 1990.

  21. Huang K. and Manousakis E., Phys. Rev. B, 36 (1987) 8302.

    Article  ADS  Google Scholar 

  22. Hirsch J. E., Phys. Rev. Lett., 59 (1987) 228.

    Article  ADS  Google Scholar 

  23. Trugman S. A., Phys. Rev. B, 37 (1988) 1597.

    Article  ADS  Google Scholar 

  24. Carlson E. W., Emery V. J., Kivelson S. A. and Orgad D., in The Physics of Conventional and Unconventional Superconductors, edited by Bennemann K. H. and Ketterson J. B. (Springer-Verlag) 2008, p. 1225.

    Google Scholar 

  25. Schrieffer J. R., Wen X.-G. and Zhang S.-C., Phys. Rev. Lett., 60 (1988) 944; Phys. Rev. B, 39 (1989) 11663.

    Article  ADS  Google Scholar 

  26. Cooper L. N., Phys. Rev., 104 (1956) 1189.

    Article  ADS  Google Scholar 

  27. Schafroth M. R., Phys. Rev., 100 (1955) 463.

    Article  ADS  MathSciNet  Google Scholar 

  28. Blatt J. M. and Butler S. T., Phys. Rev., 100 (1955) 476.

    Article  ADS  Google Scholar 

  29. Anderson P. W., Rev. Mod. Phys., 38 (1966) 298.

    Article  ADS  Google Scholar 

  30. Legget A. J., Quantum Liquids (Oxford University Press, Oxford, UK) 2008.

    Google Scholar 

  31. Berezinskii V. L., Sov. Phys. JETP, 32 (1971) 493; Sov. Phys. JETP, 34 (1972) 610.

    ADS  MathSciNet  Google Scholar 

  32. Kosterlitz J. M. and Thouless D. J., J. Phys. C, 6 (1973) 1181.

    Article  ADS  Google Scholar 

  33. Vignolle B. et al., Nature, 455 (2008) 952.

    Article  ADS  Google Scholar 

  34. Anderson P. W. and Morel P., Phys. Rev., 123 (1961) 1911.

    Article  ADS  MathSciNet  Google Scholar 

  35. Won H. and Maki K., Phys. Rev. B, 49 (1994) 1397.

    Article  ADS  Google Scholar 

  36. Timusk T. and Statt B., Rep. Prog. Phys., 62 (1999) 61.

    Article  ADS  Google Scholar 

  37. Tallon J. L. and Loran J. W., Physica C, 349 (2001) 53.

    Article  ADS  Google Scholar 

  38. Chatterjee U. et al., Nat. Phys., 6 (2010) 99.

    Article  Google Scholar 

  39. Tanaka K. et al., Science, 314 (2006) 1910.

    Article  ADS  Google Scholar 

  40. He R.-H. et al., Nat. Phys., 5 (2009) 119.

    Article  Google Scholar 

  41. Pushp A. et al., Science, 324 (2009) 1689.

    Article  ADS  Google Scholar 

  42. Hashimoto M. et al., Nat. Phys., 6 (2010) 414.

    Article  Google Scholar 

  43. Reber T. J. et al., Nat. Phys., 8 (2012) 606.

    Article  Google Scholar 

  44. Sakai S. et al., Exploring the Dark Side of Cuprate Superconductors: s-wave Symmetry of the Pseudogap, arXiv:1207.5070.

  45. Yoshida T. et al., Coexisting pseudo-gap and superconducting gap in the high-Tc superconductor La2-xSrxCuO4, arXiv:1208.2903.

  46. Hashimoto M. et al., Phys. Rev. B, 86 (2012) 094504.

    Article  ADS  Google Scholar 

  47. Kugler M. et al., Phys. Rev. Lett., 86 (2001) 4911.

    Article  ADS  Google Scholar 

  48. Hetel I., Lemberger T. R. and Randeira M., Nat. Phys., 3 (2007) 700.

    Article  Google Scholar 

  49. Corson J. et al., Nature, 398 (1999) 221.

    Article  ADS  Google Scholar 

  50. Emery V. J. and Kilvelson S. A., Nature, 374 (1985) 434.

    Article  ADS  Google Scholar 

  51. Tinkham M., Introduction to Superconductivity, second edition (Mc Graw-Hill, Inc., New York) 1996.

    Google Scholar 

  52. Wang Y., Li L. and Ong N. P., Phys. Rev. B, 73 (2006) 024510.

    Article  ADS  Google Scholar 

  53. Li L. et al., Nat. Phys., 3 (2007) 311.

    Article  Google Scholar 

  54. Chang J. et al., Nat. Phys., 8 (2012) 751.

    Article  Google Scholar 

  55. Xu Z. A. et al., Nature, 406 (2000) 486.

    Article  ADS  Google Scholar 

  56. Capan C. et al., Phys. Rev. Lett., 88 (2002) 056601.

    Article  ADS  Google Scholar 

  57. Li L., Wang Y., Checkelsky J. G. and Naughton M. J., Physica C, 460–462 (2007) 48.

    ADS  Google Scholar 

  58. Caroli C., de Gennes P. G. and Matricon J., Phys. Lett., 9 (1964) 307.

    Article  ADS  Google Scholar 

  59. Doiron-Leyrand N. et al., Nature, 447 (2007) 565.

    Article  ADS  Google Scholar 

  60. Yelland E. A. et al., Phys. Rev. Lett., 100 (2008) 047003.

    Article  ADS  Google Scholar 

  61. Bangura A. F. et al., Phys. Rev. Lett., 100 (2008) 047004.

    Article  ADS  Google Scholar 

  62. Jaudet C. et al., Physica B, 404 (2009) 354.

    Article  ADS  Google Scholar 

  63. Bangura A. F. et al., Phys. Rev. B, 82 (2010) 140501.

    Article  ADS  Google Scholar 

  64. Abrikosov A. A., Introduction to Theory of Normal Metal (Academic Press, New York and London) 1972.

    Google Scholar 

  65. Shoenberg D., Magnetic Oscillations in Metals (Cambridge University Press, Cambridge) 1984.

    Book  Google Scholar 

  66. Le Boeuf D. et al., Nature, 450 (2007) 533.

    Article  ADS  Google Scholar 

  67. Sebastian S. et al., Nat. Commun., 2 (2011) 471.

    Article  ADS  Google Scholar 

  68. Laliberte F. et al., Nat. Commun., 2 (2011) 432.

    Article  ADS  Google Scholar 

  69. Ashcroft N. W. and Mermin N. D., Solid State Physics (Harcourt College Publishers) 1976.

  70. Riggs S. C. et al., Nat. Phys., 7 (2011) 332.

    Article  Google Scholar 

  71. Volovik G. E., Sov. Phys. JETP, 58 (1993) 469.

    Google Scholar 

  72. Wade J. M. et al., J. Supercond., 7 (1994) 261.

    Article  ADS  Google Scholar 

  73. Wang Y. et al., Phys. Rev. B, 76 (2007) 064512.

    Article  ADS  Google Scholar 

  74. Guyard W. et al., Phys. Rev. B, 77 (2008) 024524.

    Article  ADS  Google Scholar 

  75. Loram J. W., Mirza K. A., Cooper J. R. and Tallon J. L., Physica C, 282–287 (1997) 1405.

    Article  ADS  Google Scholar 

  76. Loram J. W., Luo J., Cooper J. R. and Tallon J. L., J. Phys. Chem. Solids, 62 (2001) 59.

    Article  ADS  Google Scholar 

  77. Daou R. et al., Nat. Phys., 5 (2009) 31.

    Article  Google Scholar 

  78. Daou R. et al., Phys. Rev. B, 79 (2009) 180505.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cea, P. The high-temperature superconductivity in cuprates. Riv. Nuovo Cim. 36, 41–80 (2013). https://doi.org/10.1393/ncr/i2013-10085-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2013-10085-0

Navigation