Skip to main content
Log in

The high temperature superconductivity in cuprates: physics of the pseudogap region

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We discuss the physics of the high temperature superconductivity in hole doped copper oxide ceramics in the pseudogap region. Starting from an effective reduced Hamiltonian relevant to the dynamics of holes injected into the copper oxide layers proposed in a previous paper, we determine the superconductive condensate wavefunction. We show that the low-lying elementary condensate excitations are analogous to the rotons in superfluid 4He. We argue that the rotons-like excitations account for the specific heat anomaly at the critical temperature. We discuss and compare with experimental observations the London penetration length, the Abrikosov vortices, the upper and lower critical magnetic fields, and the critical current density. We give arguments to explain the origin of the Fermi arcs and Fermi pockets. We investigate the nodal gap in the cuprate superconductors and discuss both the doping and temperature dependence of the nodal gap. We suggest that the nodal gap is responsible for the doping dependence of the so-called nodal Fermi velocity detected in angle resolved photoemission spectroscopy studies. We discuss the thermodynamics of the nodal quasielectron liquid and their role in the low temperature specific heat. We propose that the ubiquitous presence of charge density wave in hole doped cuprate superconductors in the pseudogap region originates from instabilities of the nodal quasielectrons driven by the interaction with the planar CuO2 lattice. We investigate the doping dependence of the charge density wave gap and the competition between charge order and superconductivity. We discuss the effects of external magnetic fields on the charge density wave gap and elucidate the interplay between charge density wave and Abrikosov vortices. Finally, we examine the physics underlying quantum oscillations in the pseudogap region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  2. D.N. Besov, T. Timusk, Rev. Mod. Phys. 77, 721 (2005)

    Article  ADS  Google Scholar 

  3. A.J. Leggett, Nat. Phys. 2, 135 (2006)

    Article  Google Scholar 

  4. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  5. Handbook of High-Temperature Superconductivity, edited by J.R. Schrieffer, J.S. Brooks (Springer Science + Business Media, New York, USA, 2007)

  6. N. Plakida, High-Temperature Cuprate Superconductors (Springer-Verlag, Berlin, Heidelberg, 2010)

  7. H. Alloul, Compt. Rend. Phys. 15, 519 (2014)

    Article  Google Scholar 

  8. R. Wesche, Physical Properties of High-Temperature Superconductors (J. Wiley & Sons, Ltd, 2015)

  9. L. Taillefer, Ann. Rev. Condens. Matter Phys. 1, 51 (2010)

    Article  ADS  Google Scholar 

  10. B. Keimer, S. A. Kivelson, M.R. Norman, S. Uchida, J. Zaanen, Nature 518, 179 (2015)

    Article  ADS  Google Scholar 

  11. E. Fradkin, S.A. Kivelson, J.M. Tranquada, Rev. Mod. Phys. 87, 457 (2015)

    Article  ADS  Google Scholar 

  12. T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  13. J.L. Tallon, J.W. Loran, Physica C 349, 53 (2001)

    Article  ADS  Google Scholar 

  14. C. Phillips, A. Saxena, A.R. Bishop, Rep. Prog. Phys. 66, 2111 (2003)

    Article  ADS  Google Scholar 

  15. S. Hüfner, M.A. Hossain, A. Damascelli, G.A. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008)

    Article  ADS  Google Scholar 

  16. A. Sacuto, Y. Gallais, M. Cazayous, M.-A. Méasson, G.D. Gu, D. Colson, Rep. Prog. Phys. 76, 022502 (2013)

    Article  ADS  Google Scholar 

  17. A.A. Kordyuk, Low Temp. Phys. 41, 319 (2015)

    Article  ADS  Google Scholar 

  18. E. Fradkin, S.A. Kivelson, Nat. Phys. 8, 864 (2012)

    Article  Google Scholar 

  19. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  20. P.W. Anderson, The Theory of Superconductivity in the High- T c Cuprates (Princeton University Press, Princeton, New Jersey, 1997)

  21. P.W. Anderson, Phys. Rev. 115, 2 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Cea, Riv. Nuovo Cim. 3, 41 (2013)

    Google Scholar 

  23. K. Huang, E. Manousakis, Phys. Rev. B 36, 8302 (1987)

    Article  ADS  Google Scholar 

  24. J.E. Hirsch, Phys. Rev. Lett. 59, 228 (1987)

    Article  ADS  Google Scholar 

  25. J.R. Schrieffer, X.-G. Wen, S.-C. Zhang, Phys. Rev. Lett. 60, 944 (1988)

    Article  ADS  Google Scholar 

  26. J.R. Schrieffer, X.-G. Wen, S.-C. Zhang, Phys. Rev. B 39, 11663 (1989)

    Article  ADS  Google Scholar 

  27. S.W. Jang et al., arXiv:1510.07479 (2015)

  28. M.R. Schafroth, Phys. Rev. 100, 463 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.M. Blatt, S.T. Butler, Phys. Rev. 100, 476 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  30. J.M. Blatt, Theory of Superconductivity (Academic Press, New York, London, 1964)

  31. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  32. P.C. Hohenberg, Phys. Rev. 158, 383 (1967)

    Article  ADS  Google Scholar 

  33. Y. Yildirim, W. Ku, Phys. Rev. B 92, 180501(R) (2015)

    Article  ADS  Google Scholar 

  34. C. Renner et al., Phys. Rev. Lett. 80, 149 (1998)

    Article  ADS  Google Scholar 

  35. A. Kanigel et al., Phys. Rev. Lett. 101, 137002 (2008)

    Article  ADS  Google Scholar 

  36. H.-B. Yang et al., Nature 456, 77 (2008)

    Article  ADS  Google Scholar 

  37. V. Mishra, U. Chatterjee, J.C. Campuzano, M.R. Norman, Nat. Phys. 10, 357 (2014)

    Article  Google Scholar 

  38. T. Kondo et al., Nat. Commun. 6, 7699 (2015)

    Article  ADS  Google Scholar 

  39. V.L. Berezinskii, Sov. Phys. J. Exp. Theor. Phys. 32, 493 (1971)

    ADS  MathSciNet  Google Scholar 

  40. V.L. Berezinskii, Sov. Phys. J. Exp. Theor. Phys. 34, 610 (1972)

    ADS  Google Scholar 

  41. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  42. V.J. Emery, S.A. Kilvelson, Nature 374, 434 (1995)

    Article  ADS  Google Scholar 

  43. I. Hetel, T.R. Lemberger, M. Randeira, Nat. Phys. 3, 700 (2007)

    Article  Google Scholar 

  44. L.N. Cooper, Phys. Rev. 104, 1189 (1956)

    Article  ADS  Google Scholar 

  45. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  46. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  47. J.R. Schrieffer, Theory of Superconductivity (Revised Printing, Westview Press, USA, 1999)

  48. A.J. Leggett, S. Zhang, in The BCS-BEC Crossover and the Unitary Fermi Gas, edited by W. Zwerger (Springer-Verlag, Berlin, Heidelberg, 2012)

  49. A.J. Leggett, Quantum Liquids (Oxford University Press, Oxford, 2012)

  50. R.P. Feynman, in Progress in Low Temperature Physics, edited by C.J. Gorter (Interscience Publisher Inc., New York (1955), Vol. I

  51. N.N. Bogoliubov, Nuovo Cim. 6, 794 (1958)

    Article  Google Scholar 

  52. N.N. Bogoliubov, V.V. Tohmachev, D.V. Shirkov, A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959)

  53. R.P. Feynman, M. Cohen, Phys. Rev. 102, 1189 (1956)

    Article  ADS  Google Scholar 

  54. M. Cohen, R.P. Feynman, Phys. Rev. 107, 13 (1957)

    Article  ADS  Google Scholar 

  55. D. Pines, P. Nozieres, in Theory of Quantum Liquids (Perseus Book, Cambridge, Massachusetts, 1994), Vol. II

  56. J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)

    Article  ADS  Google Scholar 

  57. V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. Lett. 40, 783 (1978)

    Article  ADS  Google Scholar 

  58. V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. B 21, 1806 (1980)

    Article  ADS  Google Scholar 

  59. B.I. Halperin, D.R. Nelson, J. Low Temp. Phys. 36, 599 (1979)

    Article  ADS  Google Scholar 

  60. L.D. Landau, E.M. Lifschitz, Quantum Mechanics (Pergamon Press, Oxford, 1977)

  61. A. Junod, M. Roulin, B. Revaz, A. Erb, E. Walker, in The Gap Symmetry and Fluctuations in High-T c Superconductors, edited by J. Bok, G. Deutscher, D. Pavuna, S.A. Wolf (Plenum Press, New York, 1998)

  62. R.A. Fisher, J.E. Gordon, N.E. Phillips, in Handbook of High-Temperature Superconductivity, edited by J.R. Schrieffer, J.S. Brooks (Springer Science + Business Media, New York, USA, 2007)

  63. M.K. Wu et al., Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  64. J. Bardeen, Nuovo Cim. 5, 1766 (1957)

    Article  Google Scholar 

  65. P.W. Anderson, Phys. Rev. 112, 1900 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  66. G. Rickayzen, Phys. Rev. 115, 795 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  67. T. Takagi et al., Phys. Rev. B 40, 2254 (1989)

    Article  ADS  Google Scholar 

  68. J.B. Torrance et al., Phys. Rev. B 40, 8872 (1989)

    Article  ADS  Google Scholar 

  69. M.R. Presland et al., Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  70. D.M. Broun et al., Phys. Rev. Lett. 99, 237003 (2007)

    Article  ADS  Google Scholar 

  71. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  72. W.N. Hardy et al., Phys. Rev. Lett. 70, 3999 (1993)

    Article  ADS  Google Scholar 

  73. W.N. Hardy, S. Kamal, D.A. Bonn, in The Gap Symmetry and Fluctuations in High-T c Superconductors, edited by J. Bok, G. Deutscher, D. Pavuna, S.A. Wolf (Plenum Press, New York, 1998)

  74. D.M. Broun et al., Phys. Rev. B 56, R11443 (1997)

    Article  ADS  Google Scholar 

  75. S.-F. Lee et al., Phys. Rev. Lett. 77, 735 (1996)

    Article  ADS  Google Scholar 

  76. L. Li et al., Nat. Phys. 3, 311 (2007)

    Article  Google Scholar 

  77. Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006)

    Article  ADS  Google Scholar 

  78. G. Grissonnanche et al., Nat. Commun. 5, 3280 (2014)

    Article  ADS  Google Scholar 

  79. D. Hang et al., New J. Phys. 12, 105006 (2010)

    Article  ADS  Google Scholar 

  80. F. Coneri et al., Phys. Rev. B 81, 104507 (2010)

    Article  ADS  Google Scholar 

  81. G. Drachuck et al., Nat. Commun. 5, 3390 (2014)

    Article  ADS  Google Scholar 

  82. R. Liang, P. Dosanjh, D.A. Bonn, W.N. Hardy, A.J. Berlinsky, Phys. Rev. B 50, 4212 (1994)

    Article  ADS  Google Scholar 

  83. R. Liang, D.A. Bonn, W.N. Hardy, D. Broun, Phys. Rev. Lett. 94, 117001 (2005)

    Article  ADS  Google Scholar 

  84. Y.J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989)

    Article  ADS  Google Scholar 

  85. J. Corson et al., Nature 398, 221 (1999)

    Article  ADS  Google Scholar 

  86. G. Grissonnanche et al., Phys. Rev. B 93, 064513 (2016)

    Article  ADS  Google Scholar 

  87. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill Inc., New York, 1996)

  88. J.-F. Fagnard et al., Supercond. Sci. Technol. 23, 095012 (2010)

    Article  ADS  Google Scholar 

  89. M. Naamneh, J.C. Campuzano, A. Konigel, Phys. Rev. B 90, 224501 (2014)

    Article  ADS  Google Scholar 

  90. D.W. Lynch, C.G. Olson, Photoemission Studies of High-Temperature Superconductors (Cambridge University Press, Cambridge, UK, 1999)

  91. A. Damascelli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  92. J.C. Campuzano, M.R. Norman, M. Randeria, in The Physics of Superconductors, edited by K.H. Bennemann, J.B. Ketterson (Springer-Verlag, Berlin, Heidelberg, 2004), Vol. II

  93. S.E. Sebastian, N. Harrison, G.G. Lonzarich, Trans. R. Soc. A 369, 1687 (2011)

    Article  ADS  Google Scholar 

  94. S.E. Sebastian, N. Harrison, G.G. Lonzarich, Rep. Prog. Phys. 75, 102501 (2012)

    Article  ADS  Google Scholar 

  95. B. Vignolle, D. Vignolles, M.-H. Julien, C. Proust, Compt. Rend. Phys. 14, 39 (2013)

    Article  ADS  Google Scholar 

  96. S.E. Sebastian, C. Proust, Annu. Rev. Condens. Matter Phys. 6, 411 (2015)

    Article  ADS  Google Scholar 

  97. J.M. Luttinger, Phys. Rev. 119, 1153 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  98. L. Onsager, Phil. Mag. 43, 1006 (1952)

    Article  Google Scholar 

  99. I.M. Lifshitz, A.M. Kosevich, Sov. Phys. J. Exp. Theor. Phys. 2, 636 (1956)

    Google Scholar 

  100. A.A. Abrikosov, Introduction to Theory of Normal Metal (Academic Press, New York and London, 1972)

  101. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976)

  102. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984)

  103. S. Sakai et al., Phys. Rev. Lett. 111, 107001 (2013)

    Article  ADS  Google Scholar 

  104. K. Tanaka et al., Science 314, 1910 (2006)

    Article  ADS  Google Scholar 

  105. R.-H. He et al., Nat. Phys. 5, 119 (2009)

    Article  Google Scholar 

  106. A. Pushp et al., Science 324, 1689 (2009)

    Article  ADS  Google Scholar 

  107. T. Yoshida et al., Phys. Rev. Lett. 103, 037004 (2009)

    Article  ADS  Google Scholar 

  108. M. Hashimoto et al., Nat. Phys. 6, 414 (2010)

    Article  Google Scholar 

  109. T.J. Reber et al., Nat. Phys. 8, 606 (2012)

    Article  Google Scholar 

  110. T. Yoshida et al., arXiv:1208.2903 (2012)

  111. M. Hashimoto et al., Phys. Rev. B 86, 094504 (2012)

    Article  ADS  Google Scholar 

  112. M. Hashimoto, I.M. Vishik, R.-H. He, T.P. Devereaux, Z.-X. Shen, Nat. Phys. 10, 483 (2014)

    Article  Google Scholar 

  113. M. Hashimoto et al., Nat. Mater. 14, 37 (2015)

    Article  ADS  Google Scholar 

  114. E.M. Lifschitz, L.P. Pitaevskii, Statistical Physics, Theory of the Condensed State (Pergamon Press, Oxford, 1980)

  115. I.M. Vishik et al., Phys. Rev. Lett. 104, 207002 (2010)

    Article  ADS  Google Scholar 

  116. V.M. Svistunov, V.Yu. Tarenkov, A.I. Dyachenko, E. Hatta, J. Exp. Theor. Phys. Lett. 71, 289 (2000)

    Article  Google Scholar 

  117. Ø. Fischer, H. Kugler, I. Maggio-Aprile, C. Berthod, Rev. Mod. Phys. 79, 353 (2007)

    Article  ADS  Google Scholar 

  118. G. Deutscher, Rev. Mod. Phys. 77, 109 (2005)

    Article  ADS  Google Scholar 

  119. W.S. Lee et al., Nature 450, 81 (2007)

    Article  ADS  Google Scholar 

  120. I.M. Vishik et al., New J. Phys. 12, 105008 (2010)

    Article  ADS  Google Scholar 

  121. I.S. Gradshteyn, I.M. Ryzshik, Table of Integrals, Series and Products (Academic Press, New York, 1980)

  122. G.E. Volovik, J. Exp. Theor. Phys. Lett. 58, 457 (1993)

    Google Scholar 

  123. K.A. Moler et al., Phys. Rev. Lett. 73, 2744 (1994)

    Article  ADS  Google Scholar 

  124. K.A. Moler et al., Phys. Rev. B 55, 3954 (1997)

    Article  ADS  Google Scholar 

  125. B. Revaz et al., Phys. Rev. Lett. 80, 3364 (1998)

    Article  ADS  Google Scholar 

  126. D.A. Wright et al., Phys. Rev. Lett. 82, 1550 (1999)

    Article  ADS  Google Scholar 

  127. Y. Wang, B. Revaz, A. Erb, A. Junod, Phys. Rev. B 63, 094508 (2001)

    Article  ADS  Google Scholar 

  128. S.H. Simon, P.A. Lee, Phys. Rev. Lett. 78, 1548 (1997)

    Article  ADS  Google Scholar 

  129. S.C. Riggs et al., Nat. Phys. 7, 332 (2011)

    Article  Google Scholar 

  130. J.B. Kemper et al., Nat. Phys. 12, 47 (2016)

    Article  Google Scholar 

  131. R. Comin, A. Damascelli, Annu. Rev. Cond. Matter Phys. 7, 369 (2016)

    Article  ADS  Google Scholar 

  132. T. Wu et al, Nature 477, 191 (2011)

    Article  ADS  Google Scholar 

  133. A.M. Mounce et al., Phys. Rev. Lett. 106, 057003 (2011)

    Article  ADS  Google Scholar 

  134. G. Ghiringhelli et al., Science 337, 821 (2012)

    Article  ADS  Google Scholar 

  135. J. Chang et al., Nat. Phys. 8, 871 (2012)

    Article  Google Scholar 

  136. A.J. Achkar et al., Phys. Rev. Lett. 109, 167001 (2012)

    Article  ADS  Google Scholar 

  137. T. Wu et al., Nat. Commun. 4, 2113 (2013)

    ADS  Google Scholar 

  138. D. LeBoeuf et al., Nat. Phys. 9, 79 (2013)

    Article  Google Scholar 

  139. S. Blanco Canosa et al., Phys. Rev. Lett. 110, 187001 (2013)

    Article  ADS  Google Scholar 

  140. T.P. Croft, C. Lester, M.S. Senn, A. Bombardi, S.M. Hayden, Phys. Rev. B 89, 224513 (2014)

    Article  ADS  Google Scholar 

  141. S. Blanco Canosa et al., Phys. Rev. B 90, 054513 (2014)

    Article  ADS  Google Scholar 

  142. M. Hücker et al., Phys. Rev. B 90, 054514 (2014)

    Article  ADS  Google Scholar 

  143. K. Fujita et al., Proc. Natl. Acad. Sci. 111, E3026 (2014)

    Article  ADS  Google Scholar 

  144. M. Först et al., Phys. Rev. B 90, 184514 (2014)

    Article  ADS  Google Scholar 

  145. W. Tabis et al., Nat. Commun. 5, 5875 (2014)

    Article  ADS  Google Scholar 

  146. R. Comin et al., Science 343, 390 (2014)

    Article  ADS  Google Scholar 

  147. E.H. da Silva Neto et al., Science 343, 393 (2014)

    Article  ADS  Google Scholar 

  148. R. Comin et al., Nat. Mater. 14, 796 (2015)

    Article  ADS  Google Scholar 

  149. T. Wu et al., Nat. Commun. 6, 1 (2015)

    ADS  Google Scholar 

  150. S. Gerber et al., Science 350, 949 (2015)

    Article  Google Scholar 

  151. E.M. Forgan et al., arXiv:1504.01585 (2015)

  152. M. Hamidian et al., Nat. Phys. 12, 150 (2016)

    Article  Google Scholar 

  153. H. Fröhlich, Proc. Roy. Soc. London Ser. A 223, 296 (1954)

    Article  ADS  Google Scholar 

  154. R.E. Peierls, Quantum Theory of Solids (Oxford University Press, New York, 1955)

  155. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    Article  ADS  Google Scholar 

  156. G. Grüner, Density Waves In Solids (Addison-Wesley Publishing Company, 1994)

  157. W. Kohn, Phys. Rev. Lett. 2, 393 (1959)

    Article  ADS  Google Scholar 

  158. D. Reznik, Adv. Condens. Matter Phys. 2010, 523549 (2010)

    Article  Google Scholar 

  159. D. Pines, P. Nozieres, in Theory of Quantum Liquids (Perseus Book, Cambridge, Massachusetts, 1994), Vol. I

  160. G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, New York, 2005)

  161. M.J. Rice, S. Strässler, Solid State Commun. 13, 125 (1973)

    Article  ADS  Google Scholar 

  162. C.G. Kuper, Proc. R. Soc. A 227, 214 (1955)

    Article  ADS  Google Scholar 

  163. J.B. Nielsen, K. Carneiro, Solid State Commun. 33, 1097 (1980)

    Article  ADS  Google Scholar 

  164. R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. B 73, 180505(R) (2006)

    Article  ADS  Google Scholar 

  165. A. Shekhter et al., Nature 498, 75 (2013)

    Article  ADS  Google Scholar 

  166. K. Maki, T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964)

    Article  ADS  Google Scholar 

  167. W.D. Dieterich, P. Fulde, Z. Phys. 265, 239 (1973)

    Article  ADS  Google Scholar 

  168. T. Tiedje, J.F. Carolan, A.J. Berlinsky, Can. J. Phys. 53, 1593 (1975)

    Article  ADS  Google Scholar 

  169. J.E. Hoffman et al., Science 295, 467 (2002)

    Article  ADS  Google Scholar 

  170. J.E. Graebner, M. Robbins, Phys. Rev. Lett. 36, 422 (1976)

    Article  ADS  Google Scholar 

  171. R.M. Fleming, R.V. Coleman, Phys. Rev. Lett. 36, 1555 (1976)

    Article  ADS  Google Scholar 

  172. J.A. Wilson, Adv. Phys. 24, 117 (1975)

    Article  ADS  Google Scholar 

  173. K. Rossnagel, J. Phys.: Condens. Matter 23, 213001 (2011)

    ADS  Google Scholar 

  174. P. Schlottmann, L.M. Falicov, Phys. Rev. Lett. 38, 855 (1977)

    Article  ADS  Google Scholar 

  175. L.D. Landau, E.M. Lifschitz, Quantum Mechanics, 3rd edn. (Pergamon Press, Oxford, 1991)

  176. R.B. Dingle, Proc. R. Soc. A 211, 500 (1952)

    Article  ADS  Google Scholar 

  177. R.B. Dingle, Proc. R. Soc. A 211, 517 (1952)

    Article  ADS  Google Scholar 

  178. R.B. Dingle, Proc. R. Soc. A 212, 38 (1952)

    Article  ADS  Google Scholar 

  179. R.B. Dingle, Proc. R. Soc. A 212, 47 (1952)

    Article  ADS  Google Scholar 

  180. R.B. Dingle, Proc. R. Soc. A 216, 118 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  181. R.B. Dingle, Proc. R. Soc. A 219, 463 (1953)

    Article  ADS  Google Scholar 

  182. B.J. Ramshaw et al., Science 348, 317 (2015)

    Article  ADS  Google Scholar 

  183. K. Yamaji, J. Phys. Soc. Jpn 58, 1520 (1989)

    Article  ADS  Google Scholar 

  184. E. Suchitra et al., Proc. Natl. Acad. Sci. 107, 6175 (2010)

    Article  ADS  Google Scholar 

  185. D. LeBoeuf et al., Phys. Rev. B 83, 054506 (2011)

    Article  ADS  Google Scholar 

  186. S.-M. Baek et al., Phys. Rev. B 86, 220504 (2012)

    Article  ADS  Google Scholar 

  187. I.M. Vishik et al., Proc. Natl. Acad. Sci. 109, 45 (2012)

    Article  Google Scholar 

  188. Y. Peng et al., Nat. Commun. 4, 2459 (2013)

    ADS  Google Scholar 

  189. S. Benhabib et al., Phys. Rev. Lett. 114, 147001 (2015)

    Article  ADS  Google Scholar 

  190. S. Badoux et al., Nature 531, 210 (2016)

    Article  ADS  Google Scholar 

  191. I.M. Lifshitz, Sov. Phys. J. Exp. Theor. Phys. 11, 1130 (1959)

    Google Scholar 

  192. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

  193. L.P. Gor’kov, Phys. Rev. B 88, 041104 (2013)

    Article  ADS  Google Scholar 

  194. S.I. Mirzali et al., Proc. Natl. Acad. Sci. 110, 5774 (2013)

    Article  ADS  Google Scholar 

  195. N. Barisic et al., Proc. Natl. Acad. Sci. 110, 12235 (2013)

    Article  ADS  Google Scholar 

  196. E. Gull, A.J. Millis, Nat. Phys. 11, 808 (2015)

    Article  Google Scholar 

  197. P.W. Anderson, P. Morel, Phys. Rev. 123, 1911 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  198. H. Won, K. Maki, Phys. Rev. B 49, 1397 (1994)

    Article  ADS  Google Scholar 

  199. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  200. V.V. Schmidt, The Physics of Superconductors (Springer-Verlag, Berlin, Heidelberg, 1997)

  201. L.D. Landau, E.M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

  202. N.N. Bogoliubov, Nuovo Cim. 7, 794 (1958)

    Article  Google Scholar 

  203. J.G. Valatin, Nuovo Cim. 7, 843 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cea, P. The high temperature superconductivity in cuprates: physics of the pseudogap region. Eur. Phys. J. B 89, 176 (2016). https://doi.org/10.1140/epjb/e2016-70259-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70259-3

Keywords

Navigation