Skip to main content
Log in

Soft-matter structures: From switchable diffraction gratings to active plasmonics

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

We present a review of a series of nano/micro, soft-matter–based, periodic, composite structures, along with a theoretical model, which explains their main physical and optical features as determined by a suitable choice of the values of given physical and geometrical parameters. The historical development is illustrated by starting from the fabrication technique, which enables obtaining a structure made of films of well-aligned Liquid Crystal alternated to polymer slices. Realised samples, which exhibit a spatial periodicity in the range 0.2–15 μm, are given the generic name POLICRYPS (as an acronym of POlymer LIquid CRYstal Polymer Slices) and are obtained by curing a homogeneous mixture of mesogenic material, monomer and curing agent under suitable conditions and by means of a UV radiation. A number of interesting applications are determined by the possibility of tuning, or even switching on/off, the spatial modulation (from polymer to LC) of the refractive index of these structures; this effect of tuneability can be obtained by applying an electric field of few V/μm or, in some cases, by irradiating the sample with a light beam of suitable wavelength. We show that, depending on the used geometry, these particular structures can be exploited as switchable diffraction gratings, tuneable beam splitters, switchable optical phase modulators, tuneable Bragg filters, soft matter templates for aligning different kinds of LCs, arrays of tuneable microlaser, or can enable realising “active plasmonics” devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Gennes P. G., The Physics of Liquid Crystals (Clarendon Press, Oxford) 1974.

    MATH  Google Scholar 

  2. Khoo I. C., Liquyid Crystals - Physical Properties and Nonolinear Optical Phenomena (John Wiley & Sons, Inc., New York) 1995.

    Google Scholar 

  3. Simoni F., Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore) 1997.

    Book  Google Scholar 

  4. Sutherland R. L., Natarajan L. V., Tondiglia V. P. and Bunning T. J., Chem. Mater., 5 (1993) 1533.

    Article  Google Scholar 

  5. Khoo I. C., Opt. Lett., 20 (1995) 2137.

    Article  ADS  Google Scholar 

  6. Duca D., Sukhov A. V. and Umeton C., Liq. Cryst., 26 (1999) 931.

    Article  Google Scholar 

  7. Natarajan L. V., Shepherd C. K., Brandelik D. M., Sutherland R. L., Chandra S., Tondiglia V. P., Tomlin D. and Bunning T. J., Chem. Mater., 15 (2003) 2477.

    Article  Google Scholar 

  8. Natarajan L. V., Brown D. P., Wofford W. J., Tondiglia V. P., Sutherland R. L., Lloyd P. F. and Bunning T. J., Polymer, 47 (2006) 4411 and references therein.

  9. Caputo R., Sukhov A. V., Tabiryan N. V. and Umeton C., Chem. Phys., 245 (1999) 463.

    Article  Google Scholar 

  10. Caputo R., Sukhov A. V., Umeton C. and Ushakov R. F., J. Exp. Theor. Phys., 91 (2000) 1190.

  11. Caputo R., De Sio L., Sukhov A. V., Veltri A. and Umeton C., Opt. Lett., 29 (2004) 1261.

    Article  ADS  Google Scholar 

  12. De Sio L., Caputo R., De Luca A., Veltri A. and Umeton C., Appl. Opt., 45 (2006) 3721.

    Article  ADS  Google Scholar 

  13. Caputo R., Veltri A., Umeton C. and Sukhov A. V., J. Opt. Soc. Am. B, 21 (2004) 1939.

    Article  ADS  Google Scholar 

  14. Caputo R., Sukhov A. V., Umeton C. and Veltri A., J. Opt. Soc. Am. B, 22 (2005) 735.

    Article  ADS  Google Scholar 

  15. De Sio L., Ferjani S., Strangi G., Umeton C. and Bartolino R., Soft Matter., 7 (2011) 3739.

    Article  ADS  Google Scholar 

  16. Veltri A., Caputo R., Umeton C. and Sukhov A. V., Appl. Phys. Lett., 84 (2004) 3492.

    Article  ADS  Google Scholar 

  17. Atkins P. W., Physical Chemistry (Oxford University Press, Oxford) 1987.

    Google Scholar 

  18. Kogelnik H., Bell Syst. Tech. J., 48 (1969) 2909.

    Article  ADS  Google Scholar 

  19. http://www.beamco.com (accessed May 5, 2012).

  20. Hrozyk U. A., Serak S. V., Tabiryan N. V., Hoke L., Steeves D. M. and Kimball B., Opt. Express, 18 (2010) 8697.

    Article  ADS  Google Scholar 

  21. De Sio L., Veltri A., Umeton C., Serak S. V. and Tabirian N., Appl. Phys. Lett., 93 (2008) 181115.

    Article  ADS  Google Scholar 

  22. De Sio L., Serak S. V., Tabiryan N., Ferjani S., Veltri A. and Umeton C., Adv. Mater., 22 (2010) 2316.

    Article  Google Scholar 

  23. De Sio L., Tedesco A., Tabiryan N. and Umeton C., Appl. Phys. Lett., 97 (2010) 183507.

    Article  ADS  Google Scholar 

  24. Yariv A., Quantum Electronics (J. Wiley, New York) 1989.

    Google Scholar 

  25. De Sio L., Tabiryan N., Caputo R., Veltri A. and Umeton C., Opt. Express., 16 (2008) 7619.

    Article  ADS  Google Scholar 

  26. Caputo R., Trebisacce I., De Sio L. and Umeton C., Opt. Express., 18 (2010) 5776.

    Article  ADS  Google Scholar 

  27. d’Alessandro A., Donisi D., De Sio L., Beccherelli R., Asquini R., Caputo R. and Umeton C., Opt. Express., 16 (2008) 9254.

    Article  ADS  Google Scholar 

  28. Donisi D., Asquini R., d’Alessandro A., Bellini B., Beccherelli R., De Sio L. and Umeton C., Mol. Cryst. Liq. Cryst., 516 (2010) 152.

    Article  Google Scholar 

  29. Gilardi G., De Sio L., Beccherelli R., Asquini R., d’Alessandro A. and Umeton C., Opt. Lett., 36 (2011) 4755.

    Article  ADS  Google Scholar 

  30. Zou J., Zhao F. and Chen R. T., Appl. Opt., 41 (2002) 7620.

    Article  ADS  Google Scholar 

  31. de Gennes P. G. and Prost J., The Physics of Liquid Crystals, 2nd edition (Oxford University Press, Oxford) 1995.

  32. Meyer R. B., Phys. Rev. Lett., 22 (1969) 918.

    Article  ADS  Google Scholar 

  33. Patel J. S . and Meyer R. B., Phys. Rev. Lett., 58 (1987) 1538.

    Article  ADS  Google Scholar 

  34. Carbone G., Salter P., Elston S. J., Raynes P., De Sio L., Ferjani S., Strangi G., Umeton C. and Bartolino R., Appl. Phys. Lett., 95 (2009) 011102.

    Article  ADS  Google Scholar 

  35. Gaylord T. K. and Moharam M. G., Appl. Opt., 20 (1981) 3271.

    Article  ADS  Google Scholar 

  36. Hegde G. and Komitov L., Appl. Phys. Lett., 96 (2010) 113503.

    Article  ADS  Google Scholar 

  37. Meyer R. B., Mol. Cryst. Liq. Cryst., 40 (1977) 33.

    Article  Google Scholar 

  38. Clark N. A. and Lagerwall S. T., Appl. Phys. Lett., 36 (1980) 899.

    Article  ADS  Google Scholar 

  39. Watson P., Bos P. J. and Pirs J., Phys. Rev. E, 56 (1997) R3769.

    Article  ADS  Google Scholar 

  40. Lee J. B., Pelcovits R. A. and Meyer R. B., Phys. Rev. E, 75 (2007) 051701.

    Article  ADS  Google Scholar 

  41. Kogelnik H. and Shank C. V., Appl. Phys. Lett., 18 (1971) 152 and references therein.

  42. MuÑoz A. F., Palffy-Muhoray P. and Taheri B., Opt. Lett., 26 (2001) 11.

    Article  Google Scholar 

  43. Strangi G., Barna V., Caputo R., De Luca A., Versace C., Scaramuzza N., Umeton C. and Bartolino R., Phys. Rev. Lett., 94 (2005) 063903.

    Article  ADS  Google Scholar 

  44. Ozaki M., Kasano M., Ganzke D., Haase W. and Yoshino K., Adv. Mater., 14 (2002) 306.

    Article  Google Scholar 

  45. Blinov L. M. and Chigrinov V. G., Electrooptic Effects in Liquid Crystal Materials (Springer, New York) 1994.

    Book  Google Scholar 

  46. Mie G., Ann. Phys. (Liepzig), 25 (1908) 377.

    Article  ADS  Google Scholar 

  47. Pratibha R., Park W. and Smalyukh I., J. App. Phys., 107 (2010) 063511.

    Article  ADS  Google Scholar 

  48. Kossyrev P. A., Yin A., Cloutier S. G., Cardimona D. A., Huang D., Alsing P. M. and Xu J. M., Nano. Lett., 5 (2005) 1978.

    Article  ADS  Google Scholar 

  49. Hegmann T., Qi H. and Marx V. M., J. In. Org. Pol. Mater., 17 (2007) 483.

    Article  Google Scholar 

  50. Mitov M., Portet C., Bourgerette C., Snoeck E. and Verelst M., Nat. Mater., 1 (2002) 229.

    Article  ADS  Google Scholar 

  51. http://www.harima.co.jp.

  52. Maekawa K., Yamasaki K., Niizeki T., Mita M., Matsuba Y., Terada N. and Saito H., Mater. Sci. Forum, 2085 (2010) 638.

    Google Scholar 

  53. http://www.merck.de.

  54. Link S. and El-Sayed M. A., J. Phys. Chem. B, 103 (1999) 4212.

    Article  Google Scholar 

  55. Johnson P. B. and Christy R. W., Phys. Rev. B, 6 (1972) 4370.

    Article  ADS  Google Scholar 

  56. Tam F., Goodrich G. P., Johnson B. R. and Halas N. J., Nano Lett., 7 (2007) 496.

    Article  ADS  Google Scholar 

  57. Kreibig U. and Vollmer M., Optical Properties of Metal Clusters (Springer-Verlag, Berlin) 1996.

    Google Scholar 

  58. Kinnan M. K. and Chumanov G., J. Phys. Chem. C, 114 (2010) 7496.

    Article  Google Scholar 

  59. De Sio L., Caputo R., Cataldi U. and Umeton C., J. Mater. Chem., 21 (2011) 18967.

    Article  Google Scholar 

  60. Caputo R., De Luca A., De Sio L., Pezzi L., Strangi G., Umeton C., Veltri A., Asquini R., d’Alessandro A., Donisi D., Beccherelli R., Sukhov A. V. and Tabiryan N. V., J. Opt. A: Pure Appl. Opt., 11 (2009) 024017.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Sio, L., Veltri, A., Caputo, R. et al. Soft-matter structures: From switchable diffraction gratings to active plasmonics. Riv. Nuovo Cim. 35, 575–606 (2012). https://doi.org/10.1393/ncr/i2012-10082-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2012-10082-9

Navigation