Skip to main content
Log in

Optical materials and metamaterials from nanostructured soft matter

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Soft materials such as block copolymers, liquid crystals and colloidal assemblies are excellent candidates for use in optical applications due to their ability to spontaneously self-assemble into ordered structures on optically-relevant length scales. Some of these applications rely on optical properties that are intrinsic to the structure and chemical composition of the soft material itself, while others are reliant on the presence of inorganic nanomaterials within the soft material to produce the properties of interest. However, soft materials can be used to generate optical phenomena that originate not just from the intrinsic properties of the nanomaterials, but from their spatial organization as well. In the latter case, exotic optical phenomena such as light focusing beyond the diffraction limit, negative index of refraction and nonlinear photonics appear. These properties originate from the collective response of multiple nanostructures organized to produce an ordered metamaterial. Soft materials, being an excellent medium to convey order on the nanoscale, can be utilized in next generation optical applications to create this kind of organization. Here, we survey how soft matter can be leveraged in optical applications by exploiting self-assembly and directed self-assembly as methods to produce ordered structures with desirable properties. We highlight applications where the soft material is the optically active component, and others where it’s used in tandem with nanomaterials. Specifically, we focus on how soft materials can be used to spatially organize inorganic nanomaterials for use in optical applications where the controlled assembly of such nanomaterials is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Google Scholar 

  2. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2010, 6, 28–32.

    Google Scholar 

  3. Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472.

    Google Scholar 

  4. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Google Scholar 

  5. Meinzer, N.; Barnes, W. L.; Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898.

    Google Scholar 

  6. Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 2004, 305, 788–792.

    Google Scholar 

  7. Li, G. X.; Zhang, S.; Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2017, 2, 17010.

    Google Scholar 

  8. Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.

    Google Scholar 

  9. Willets, K. A.; van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

    Google Scholar 

  10. Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871.

    Google Scholar 

  11. Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337.

    Google Scholar 

  12. Huang, L. L.; Chen, X. Z.; Mühlenbernd, H.; Li, G. X.; Bai, B. F.; Tan, Q. F.; Jin, G. F.; Zentgraf, T.; Zhang, S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012, 12, 5750–5755.

    Google Scholar 

  13. Ni, H. B.; Wang, M.; Shen, T. Y.; Zhou, J. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing. ACS Nano 2015, 9, 1913–1925.

    Google Scholar 

  14. Lyvers, D. P.; Moon, J. M.; Kildishev, A. V.; Shalaev, V. M.; Wei, A. Gold nanorod arrays as plasmonic cavity resonators. ACS Nano 2008, 2, 2569–2576.

    Google Scholar 

  15. Zhang, S. J.; Pelligra, C. I.; Feng, X. D.; Osuji, C. O. Directed assembly of hybrid nanomaterials and nanocomposites. Adv. Mater. 2018, 30, 1705794.

    Google Scholar 

  16. Hu, H. Q.; Gopinadhan, M.; Osuji, C. O. Directed self-assembly of block copolymers: A tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 2014, 10, 3867–3889.

    Google Scholar 

  17. Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 2009, 8, 979–985.

    Google Scholar 

  18. Lim, H. S.; Lee, J. H.; Walish, J. J.; Thomas, E. L. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 2012, 6, 8933–8939.

    Google Scholar 

  19. Lee, W.; Lee, S. Y.; Briber, R. M.; Rabin, O. Self-assembled SERS substrates with tunable surface Plasmon resonances. Adv. Funct. Mater. 2011, 21, 3424–3429.

    Google Scholar 

  20. Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 2007, 6, 957–960.

    Google Scholar 

  21. Mai, Y. Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.

    Google Scholar 

  22. Andrienko, D. Introduction to liquid crystals. J. Mol. Liq. 2018, 267, 520–541.

    Google Scholar 

  23. de Gennes, P. G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, 1995.

    Google Scholar 

  24. Figueiredo Neto, A. M.; Salinas, S. R. A. The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties; Oxford University Press: New York, 2005.

    Google Scholar 

  25. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126–2129.

    Google Scholar 

  26. Rokhlenko, Y.; Gopinadhan, M.; Osuji, C. O.; Zhang, K.; O’Hern, C. S.; Larson, S. R.; Gopalan, P.; Majewski, P. W.; Yager, K. G. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy. Phys. Rev. Lett. 2015, 11 5, 258302.

    Google Scholar 

  27. Majewski, P. W.; Gopinadhan, M.; Jang, W. S.; Lutkenhaus, J. L.; Osuji, C. O. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J. Am. Chem. Soc. 2010, 132, 17516–17522.

    Google Scholar 

  28. Tran, H.; Gopinadhan, M.; Majewski, P. W.; Shade, R.; Steffes, V.; Osuji, C. O.; Campos, L. M. Monoliths of semiconducting block copolymers by magnetic alignment. ACS Nano 2013, 7, 5514–5521.

    Google Scholar 

  29. Gopinadhan, M.; Majewski, P. W.; Beach, E. S.; Osuji, C. O. Magnetic field alignment of a diblock copolymer using a supramolecular route. ACS Macro Lett. 2011, 1, 184–189.

    Google Scholar 

  30. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003, 424, 411–414.

    Google Scholar 

  31. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 2008, 321, 939–943.

    Google Scholar 

  32. Urbas, A. M.; Maldovan, M.; DeRege, P.; Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 2002, 14, 1850–1853.

    Google Scholar 

  33. Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 2000, 12, 812–814.

    Google Scholar 

  34. Osuji, C.; Chao, C. Y.; Bita, I.; Ober, C. K.; Thomas, E. L. Temperature-dependent photonic bandgap in a self-assembled hydrogen-bonded liquid-crystalline diblock copolymer. Adv. Funct. Mater. 2002, 12, 753–758.

    Google Scholar 

  35. Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L. Bioinspired electrochemically tunable block copolymer full color pixels. Adv. Mater. 2009, 21, 3078–3081.

    Google Scholar 

  36. Liberman-Martin, A. L.; Chu, C. K.; Grubbs, R. H. Application of bottlebrush block copolymers as photonic crystals. Macromol. Rapid Commun. 2017, 38, 1700058.

    Google Scholar 

  37. Sveinbjörnsson, B. R.; Weitekamp, R. A.; Miyake, G. M.; Xia, Y.; Atwater, H. A.; Grubbs, R. H. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl. Acad. Sci. USA 2012, 109, 14332–14336.

    Google Scholar 

  38. Miyake, G. M.; Weitekamp, R. A.; Piunova, V. A.; Grubbs, R. H. Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. J. Am. Chem. Soc. 2012, 134, 14249–14254.

    Google Scholar 

  39. Miyake, G. M.; Piunova, V. A.; Weitekamp, R. A.; Grubbs, R. H. Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. Angew. Chem., Int. Ed. 2012, 51, 11246–11248.

    Google Scholar 

  40. Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self — assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

    Google Scholar 

  41. Ge, J. P.; Yin, Y. D. Responsive photonic crystals. Angew. Chem., Int. Ed. 2011, 50, 1492–1522.

    Google Scholar 

  42. Aguirre, C. I.; Reguera, E.; Stein, A. Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 2010, 20, 2565–2578.

    Google Scholar 

  43. Takeoka, Y.; Watanabe, M. Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 2003, 19, 9104–9106.

    Google Scholar 

  44. Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534–9537.

    Google Scholar 

  45. Ge, J. P.; Hu, Y. X.; Yin, Y. D. Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. 2007, 119, 7572–7575.

    Google Scholar 

  46. Shim, T. S.; Kim, S. H.; Sim, J. Y.; Lim, J. M.; Yang, S. M. Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv. Mater. 2010, 22, 4494–4498.

    Google Scholar 

  47. Wang, M. S.; He, L.; Xu, W. J.; Wang, X.; Yin, Y. D. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew. Chem., Int. Ed. 2015, 54, 7077–7081.

    Google Scholar 

  48. Dierking, I. Textures of Liquid Crystals; Wiley-VCH: Weinheim, 2003.

    Google Scholar 

  49. Hird, M. Ferroelectricity in liquid crystals—materials, properties and applications. Liq. Cryst. 2011, 38, 1467–1493.

    Google Scholar 

  50. Clark, N. A.; Lagerwall, S. T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 1980, 36, 899–901.

    Google Scholar 

  51. Meiboom, S.; Sammon, M.; Brinkman, W. F. Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals. Phys. Rev. A 1983, 27, 438–454.

    Google Scholar 

  52. Wright, D. C.; Mermin, N. D. Crystalline liquids: The blue phases. Rev. Mod. Phys. 1989, 61, 385–432.

    Google Scholar 

  53. Crooker, P. P. Blue phases. In Chirality in Liquid Crystals. Kitzerow, H. S.; Bahr, C., Eds.; Springer: New York, 2001; pp 186–222.

    Google Scholar 

  54. Kikuchi, H. Liquid crystalline blue phases. In Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Kato, T., Ed.; Springer: Berlin Heidelberg, 2007; pp 99–117.

    Google Scholar 

  55. Castles, F.; Morris, S. M.; Hung, J. M. C.; Qasim, M. M.; Wright, A. D.; Nosheen, S.; Choi, S. S.; Outram, B. I.; Elston, S. J.; Burgess, C. et al. Stretchable liquid-crystal blue-phase gels. Nat. Mater. 2014, 13, 817–821.

    Google Scholar 

  56. Lin, T. H.; Li, Y. N.; Wang, C. T.; Jau, H. C.; Chen, C. W.; Li, C. C.; Bisoyi, H. K.; Bunning, T. J.; Li, Q. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv. Mater. 2013, 25, 5050–5054.

    Google Scholar 

  57. Yan, J.; Wu, S. T.; Cheng, K. L.; Shiu, J. W. A full-color reflective display using polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 2013, 102, 081102.

    Google Scholar 

  58. Yokoyama, S.; Mashiko, S.; Kikuchi, H.; Uchida, K.; Nagamura, T. Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv. Mater. 2006, 18, 48–51.

    Google Scholar 

  59. Kikuchi, H.; Yokota, M.; Hisakado, Y.; Yang, H.; Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 2002, 1, 64–68.

    Google Scholar 

  60. Ravnik, M.; Alexander, G. P.; Yeomans, J. M.; Žumer, S. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc. Natl. Acad. Sci. USA 2011, 108, 5188–5192.

    Google Scholar 

  61. Yoshida, H.; Tanaka, Y.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Kikuchi, H.; Ozaki, M. Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2009, 2, 121501.

    Google Scholar 

  62. Martínez-González, J. A.; Li, X.; Sadati, M.; Zhou, Y.; Zhang, R.; Nealey, P. F.; de Pablo, J. J. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nat. Commun. 2017, 8, 15854.

    Google Scholar 

  63. Oton, E.; Netter, E.; Nakano, T.; Katayama, Y. D.; Inoue, F. Monodomain blue phase liquid crystal layers for phase modulation. Sci. Rep. 2017, 7, 44575.

    Google Scholar 

  64. Liu, Q. K.; Cui, Y. X.; Gardner, D.; Li, X.; He, S. L.; Smalyukh, I. I. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 2010, 10, 1347–1353.

    Google Scholar 

  65. Zhang, Y.; Liu, Q. K.; Mundoor, H.; Yuan, Y.; Smalyukh, I. I. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and e-polarizers. ACS Nano 2015, 9, 3097–3108.

    Google Scholar 

  66. Umadevi, S.; Feng, X.; Hegmann, T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 2013, 23, 1393–1403.

    Google Scholar 

  67. Feng, X.; Sosa-Vargas, L.; Umadevi, S.; Mori, T.; Shimizu, Y.; Hegmann, T. Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and p–p interactions. Adv. Funct. Mater. 2015, 25, 1180–1192.

    Google Scholar 

  68. Schneider, J.; Zhang, W. L.; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H. S.; Rogach, A. L. Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal polymer matrix. Nano Lett. 2017, 17, 3133–3138.

    Google Scholar 

  69. Lee, E.; Xia, Y.; Ferrier, R. C. Jr.; Kim, H. N.; Gharbi, M. A.; Stebe, K. J.; Kamien, R. D.; Composto, R. J.; Yang, S. Fine golden rings: Tunable surface plasmon resonance from assembled nanorods in topological defects of liquid crystals. Adv. Mater. 2016, 28, 2731–2736.

    Google Scholar 

  70. Thorkelsson, K.; Mastroianni, A. J.; Ercius, P.; Xu, T. Direct nanorod assembly using block copolymer-based supramolecules. Nano Lett. 2012, 12, 498–504.

    Google Scholar 

  71. Deshmukh, R. D.; Liu, Y.; Composto, R. J. Two-dimensional confinement of nanorods in block copolymer domains. Nano Lett. 2007, 7, 3662–3668.

    Google Scholar 

  72. Ploshnik, E.; Salant, A.; Banin, U.; Shenhar, R. Hierarchical surface patterns of nanorods obtained by co-assembly with block copolymers in ultrathin films. Adv. Mater. 2010, 22, 2774–2779.

    Google Scholar 

  73. Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453–458.

    Google Scholar 

  74. Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.; Senesi, A. J.; Mirkin, C. A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 2010, 9, 913–917.

    Google Scholar 

  75. Tian, Y.; Wang, T.; Liu, W. Y.; Xin, H. L.; Li, H. L.; Ke, Y. G.; Shih, W. M.; Gang, O. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 2015, 10, 637–644.

    Google Scholar 

  76. Liu, W. Y.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 2016, 8, 867–873.

    Google Scholar 

  77. Tian, Y.; Zhang, Y. G.; Wang, T.; Xin, H. L.; Li, H. L.; Gang, O. Lattice engineering through nanoparticle–DNA frameworks. Nat. Mater. 2016, 15, 654–661.

    Google Scholar 

  78. Liu, W. Y.; Tagawa, M.; Xin, H. L.; Wang, T.; Emamy, H.; Li, H. L.; Yager, K. G.; Starr, F. W.; Tkachenko, A. V.; Gang, O. Diamond family of nanoparticle superlattices. Science 2016, 351, 582–586.

    Google Scholar 

  79. Park, D. J.; Zhang, C.; Ku, J. C.; Zhou, Y.; Schatz, G. C.; Mirkin, C. A. Plasmonic photonic crystals realized through DNA-programmable assembly. Proc. Natl. Acad. Sci. USA 2015, 11 2, 977–981.

    Google Scholar 

  80. Ross, M. B.; Blaber, M. G.; Schatz, G. C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 2014, 5, 4090.

    Google Scholar 

  81. Pelligra, C. I.; Huang, S.; Singer, J. P.; Mayo, A. T.; Mu, R. R.; Osuji, C. O. Scalable high-fidelity growth of semiconductor nanorod arrays with controlled geometry for photovoltaic devices using block copolymers. Small 2014, 10, 4304–4309.

    Google Scholar 

  82. Pelligra, C. I.; Toth, K.; Hu, H. Q.; Osuji, C. O. Rapid fabrication of ZnO nanorod arrays with controlled spacing by micelle-templated solvothermal growth. Nanoscale 2016, 8, 149–156.

    Google Scholar 

  83. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

    Google Scholar 

  84. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671.

    Google Scholar 

  85. Hur, K.; Francescato, Y.; Giannini, V.; Maier, S. A.; Hennig, R. G.; Wiesner, U. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew. Chem., Int. Ed. 2011, 50, 11985–11989.

    Google Scholar 

  86. Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U. A 3D optical metamaterial made by self-assembly. Adv. Mater. 2012, 24, OP23–OP27.

  87. Salvatore, S.; Demetriadou, A.; Vignolini, S.; Oh, S. S.; Wuestner, S.; Yufa, N. A.; Stefik, M.; Wiesner, U.; Baumberg, J. J.; Hess, O. et al. Tunable 3D extended self-assembled gold metamaterials with enhanced light transmission. Adv. Mater. 2013, 25, 2713–2716.

    Google Scholar 

  88. Moon, H. S.; Kim, J. Y.; Jin, H. M.; Lee, W. J.; Choi, H. J.; Mun, J. H.; Choi, Y. J.; Cha, S. K.; Kwon, S. H.; Kim, S. O. Atomic layer deposition assisted pattern multiplication of block copolymer lithography for 5 nm scale nanopatterning. Adv. Funct. Mater. 2014, 24, 4343–4348.

    Google Scholar 

  89. Park, S.; Wang, J. Y.; Kim, B.; Xu, J.; Russell, T. P. A simple route to highly oriented and ordered nanoporous block copolymer templates. ACS Nano 2008, 2, 766–772.

    Google Scholar 

  90. Park, S.; Wang, J. Y.; Kim, B.; Russell, T. P. From nanorings to nanodots by patterning with block copolymers. Nano Lett. 2008, 8, 1667–1672.

    Google Scholar 

  91. Chai, J. N.; Buriak, J. M. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano 2008, 2, 489–501.

    Google Scholar 

  92. Mun, J. H.; Chang, Y. H.; Shin, D. O.; Yoon, J. M.; Choi, D. S.; Lee, K. M.; Kim, J. Y.; Cha, S. K.; Lee, J. Y.; Jeong, J. R. et al. Monodisperse pattern nanoalloying for synergistic intermetallic catalysis. Nano Lett. 2013, 13, 5720–5726.

    Google Scholar 

  93. Ghoshal, T.; Maity, T.; Godsell, J. F.; Roy, S.; Morris, M. A. Large scale monodisperse hexagonal arrays of superparamagnetic iron oxides nanodots: A facile block copolymer inclusion method. Adv. Mater. 2012, 24, 2390–2397.

    Google Scholar 

  94. Cummins, C.; Ghoshal, T.; Holmes, J. D.; Morris, M. A. Strategies for inorganic incorporation using neat block copolymer thin films for etch mask function and nanotechnological application. Adv. Mater. 2016, 28, 5586–5618.

    Google Scholar 

  95. Gharbi, M. A.; Manet, S.; Lhermitte, J.; Brown, S.; Milette, J.; Toader, V.; Sutton, M.; Reven, L. Reversible nanoparticle cubic lattices in blue phase liquid crystals. ACS Nano 2016, 10, 3410–3415.

    Google Scholar 

  96. Castles, F.; Day, F. V.; Morris, S. M.; Ko, D. H.; Gardiner, D. J.; Qasim, M. M.; Nosheen, S.; Hands, P. J. W.; Choi, S. S.; Friend, R. H. et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat. Mater. 2012, 11, 599–603.

    Google Scholar 

  97. Torquato, S.; Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 2003, 68, 041113.

    Google Scholar 

  98. Torquato, S. Hyperuniform states of matter. Phys. Rep. 2018, 745, 1–95.

    Google Scholar 

  99. Jiao, Y.; Lau, T.; Hatzikirou, H.; Meyer-Hermann, M.; Corbo, J. C.; Torquato, S. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 2014, 89, 022721.

    Google Scholar 

  100. Zachary, C. E.; Jiao, Y.; Torquato, S. Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings. Phys. Rev. Lett. 2011, 106, 178001.

    Google Scholar 

  101. Donev, A.; Stillinger, F. H.; Torquato, S. Unexpected density fluctuations in jammed disordered sphere packings. Phys. Rev. Lett. 2005, 95, 090604.

    Google Scholar 

  102. Florescu, M.; Torquato, S.; Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. USA 2009, 106, 20658–20663.

    Google Scholar 

  103. Florescu, M.; Steinhardt, P. J.; Torquato, S. Optical cavities and waveguides in hyperuniform disordered photonic solids. Phys. Rev. B 2013, 87, 165116.

    Google Scholar 

  104. Man, W. N.; Florescu, M.; Williamson, E. P.; He, Y. Q.; Hashemizad, S. R.; Leung, B. Y. C.; Liner, D. R.; Torquato, S.; Chaikin, P. M.; Steinhardt, P. J. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids. Proc. Natl. Acad. Sci. USA 2013, 11 0, 15886–15891, DOI: 10.1073/pnas.1307879110.

    Google Scholar 

  105. Man, W. N.; Florescu, M.; Matsuyama, K.; Yadak, P.; Nahal, G.; Hashemizad, S.; Williamson, E.; Steinhardt, P.; Torquato, S.; Chaikin, P. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast. Opt. Express 2013, 21, 19972–19981.

    Google Scholar 

  106. Degl’Innocenti, R.; Shah, Y. D.; Masini, L.; Ronzani, A.; Pitanti, A.; Ren, Y.; Jessop, D. S.; Tredicucci, A.; Beere, H. E.; Ritchie, D. A. Hyperuniform disordered terahertz quantum cascade laser. Sci. Rep. 2016, 6, 19325.

    Google Scholar 

  107. Sellers, S. R.; Man, W. N.; Sahba, S.; Florescu, M. Local self-uniformity in photonic networks. Nat. Commun. 2017, 8, 14439.

    Google Scholar 

  108. Ma, T.; Guerboukha, H.; Girard, M.; Squires, A. D.; Lewis, R. A.; Skorobogatiy, M. 3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors. Adv. Opt. Mater. 2016, 4, 2085–2094.

    Google Scholar 

  109. Piechulla, P. M.; Muehlenbein, L.; Wehrspohn, R. B.; Nanz, S.; Abass, A.; Rockstuhl, C.; Sprafke, A. Fabrication of nearly-hyperuniform substrates by tailored disorder for photonic applications. Adv. Opt. Mater. 2018, 6, 1701272.

    Google Scholar 

  110. Zito, G.; Rusciano, G.; Pesce, G.; Malafronte, A.; di Girolamo, R.; Ausanio, G.; Vecchione, A.; Sasso, A. Nanoscale engineering of two-dimensional disordered hyperuniform block-copolymer assemblies. Phys. Rev. E 2015, 92, 050601.

    Google Scholar 

  111. Zito, G.; Rusciano, G.; Pesce, G.; Dochshanov, A.; Sasso, A. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. Nanoscale 2015, 7, 8593–8606.

    Google Scholar 

  112. de Rosa, C.; Auriemma, F.; Diletto, C.; di Girolamo, R.; Malafronte, A.; Morvillo, P.; Zito, G.; Rusciano, G.; Pesce, G.; Sasso, A. Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 8061–8069.

    Google Scholar 

  113. Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957.

    Google Scholar 

  114. Smith, D. R.; Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 2003, 90, 077405.

    Google Scholar 

  115. Biehs, S. A.; Tschikin, M.; Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 2012, 109, 104301.

    Google Scholar 

  116. Volokitin, A. I.; Persson, B. N. J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 2007, 79, 1291–1329.

    Google Scholar 

  117. Shen, S.; Narayanaswamy, A.; Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 2009, 9, 2909–2913.

    Google Scholar 

  118. Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonics 2007, 1, 123–128.

    Google Scholar 

  119. Saranathan, V.; Seago, A. E.; Sandy, A.; Narayanan, S.; Mochrie, S. G. J.; Dufresne, E. R.; Cao, H.; Osuji, C. O.; Prum, R. O. Structural diversity of arthropod biophotonic nanostructures spans amphiphilic phase-space. Nano Lett. 2015, 15, 3735–3742.

    Google Scholar 

  120. Vignolini, S.; Rudall, P. J.; Rowland, A. V.; Reed, A.; Moyroud, E.; Faden, R. B.; Baumberg, J. J.; Glover, B. J.; Steiner, U. Pointillist structural color in Pollia fruit. Proc. Natl. Acad. Sci. USA 2012, 109, 15712–15715.

    Google Scholar 

  121. Prum, R. O.; Torres, R. H.; Williamson, S.; Dyck, J. Coherent light scattering by blue feather barbs. Nature 1998, 396, 28–29.

    Google Scholar 

  122. Dufresne, E. R.; Noh, H.; Saranathan, V.; Mochrie, S. G. J.; Cao, H.; Prum, R. O. Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 2009, 5, 1792–1795.

    Google Scholar 

  123. Noh, H.; Liew, S. F.; Saranathan, V.; Mochrie, S. G. J.; Prum, R. O.; Dufresne, E. R.; Cao, H. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv. Mater. 2010, 22, 2871–2880.

    Google Scholar 

  124. Prum, R. O.; Torres, R. H. Structural colouration of mammalian skin: Convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 2004, 207, 2157–2172.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from NSF through DMR 1720530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinedum O. Osuji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabinet, U.R., Osuji, C.O. Optical materials and metamaterials from nanostructured soft matter. Nano Res. 12, 2172–2183 (2019). https://doi.org/10.1007/s12274-019-2437-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2437-1

Keywords

Navigation