Skip to main content
Log in

Two-dimensional Bose fluids: An atomic physics perspective

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

We give in this lecture an introduction to the physics of two-dimensional (2d) Bose gases. We first discuss the properties of uniform, infinite 2d Bose fluids at non-zero temperature T. We explain why thermal fluctuations are strong enough to destroy the fully ordered state associated with Bose-Einstein condensation, but are not strong enough to suppress superfluidity in an interacting system at low T. We present the basics of the Berezinskii-Kosterlitz-Thouless theory, which provides the general framework for understanding 2d superfluidity. We then turn to experimentally relevant finite-size systems, in which the presence of residual “quasi–long-range” order at low temperatures leads to an interesting interplay between superfluidity and condensation. Finally we summarize the recent progress in theoretical understanding and experimental investigation of ultracold atomic gases confined to a quasi-2d geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peierls R. E., Surprises in Theoretical Physics (Princeton University Press) 1979.

    Google Scholar 

  2. Bishop D. J. and Reppy J. D., Phys. Rev. Lett., 40 (1978) 1727.

    Article  ADS  Google Scholar 

  3. Safonov A. I., Vasilyev S. A., Yasnikov I. S., Lukashevich I. I. and Jaakkola S., Phys. Rev. Lett., 81 (1998) 4545.

    Article  ADS  Google Scholar 

  4. Minnhagen P., Rev. Mod. Phys., 59 (1987) 1001.

    Article  ADS  Google Scholar 

  5. Posazhennikova A., Rev. Mod. Phys., 78 (2006) 1111.

    Article  ADS  Google Scholar 

  6. Bloch I., Dalibard J. and Zwerger W., Rev. Mod. Phys., 80 (2008) 885.

    Article  ADS  Google Scholar 

  7. Snoke D., Science, 298 (2002) 1368.

    Article  ADS  Google Scholar 

  8. Butov L. V., J. Phys. Condens. Matter, 16 (2004) R1577.

    Article  ADS  Google Scholar 

  9. Kasprzak J., Richard M., Kundermann S., Baas A., Jeambrun P., Keeling J. M. J., Marchetti F. M., Szymanska M. H., Andre R., Staehli J. L., Savona V., Littlewood P. B., Deveaud B. and Dang L. S., Nature, 443 (2006) 409.

    Article  ADS  Google Scholar 

  10. Amo A., Lefrere J., Pigeon S., Adrados C., Ciuti C., Carusotto I., Houdre R., Giacobino E. and Bramati A., Nature Phys., 5 (2009) 805.

    Article  ADS  Google Scholar 

  11. Kosterlitz J. M., J. Phys. C: Solid State Physics, 7 (1974) 1046.

    Article  ADS  Google Scholar 

  12. Nelson D. R. and Halperin B. I., Phys. Rev. B, 19 (1979) 2457.

    Article  ADS  Google Scholar 

  13. Strandburg K. J., Rev. Mod. Phys., 60 (1988) 161.

    Article  ADS  Google Scholar 

  14. Peierls R. E., Helv. Phys. Acta, 7 (1934) 81.

    Google Scholar 

  15. Peierls R. E., Ann. Inst. Henri Poincaré, 5 (1935) 177.

    MathSciNet  Google Scholar 

  16. Bogoliubov N. N., Physica, 26 (1960) S1.

    Article  ADS  Google Scholar 

  17. Hohenberg P. C., Phys. Rev., 158 (1967) 383.

    Article  ADS  Google Scholar 

  18. Mermin N. D. and Wagner H., Phys. Rev. Lett., 17 (1966) 1307.

    Article  ADS  Google Scholar 

  19. Penrose O. and Onsager L., Phys. Rev., 104 (1956) 576.

    Article  ADS  Google Scholar 

  20. Berezinskii V. L., Sov. Phys. JETP, 34 (1971) 610.

    ADS  MathSciNet  Google Scholar 

  21. Kosterlitz J. M. and Thouless D. J., J. Phys. C: Solid State Physics, 6 (1973) 1181.

    Article  ADS  Google Scholar 

  22. Huang K., Statistical Mechanics (Wiley, New York) 1987.

    MATH  Google Scholar 

  23. Olshanii M. and Pricoupenko L., Phys. Rev. Lett., 88 (2002) 010402.

    Article  ADS  Google Scholar 

  24. Al Khawaja U., Andersen J. O., Proukakis N. P. and Stoof H. T. C., Phys. Rev. A, 66 (2002) 013615.

    Article  ADS  Google Scholar 

  25. Adhikari S. K., Am. J. Phys., 54 (1986) 362.

    Article  ADS  Google Scholar 

  26. Hadzibabic Z., Krüger P., Cheneau M., Battelier B. and Dalibard J., Nature, 441 (2006) 1118.

    Article  ADS  Google Scholar 

  27. Krüger P., Hadzibabic Z. and Dalibard J., Phys. Rev. Lett., 99 (2007) 040402.

    Article  ADS  Google Scholar 

  28. Cladé P., Ryu C., Ramanathan A., Helmerson K. and Phillips W. D., Phys. Rev. Lett., 102 (2009) 170401.

    Article  ADS  Google Scholar 

  29. Prokof’ev N. V., Ruebenacker O. and Svistunov B. V., Phys. Rev. Lett., 87 (2001) 270402.

    Article  Google Scholar 

  30. Mora C. and Castin Y., Phys. Rev. A, 67 (2003) 053615.

    Article  ADS  Google Scholar 

  31. Castin Y., J. Phys. IV, 116 (2004) 87.

    Google Scholar 

  32. Gross E. P., Il Nuovo Cimento, 20 (1961) 454.

    Article  ADS  Google Scholar 

  33. Pitaevskii L. P., Sov. Phys. JETP, 13 (1961) 451.

    Google Scholar 

  34. Ma S.-K., Statistical Mechanics, Chapter 30 (World Scientific, Singapore) 1985.

    Book  Google Scholar 

  35. Kagan Y., Svistunov B. V. and Shlyapnikov G. V., Sov. Phys. JETP, 66 (1987) 314.

    Google Scholar 

  36. Popov V. N., Functional Integrals and Collective Modes (Cambridge University Press, Cambridge) 1987.

    MATH  Google Scholar 

  37. Petrov D. S., Gangardt D. M. and Shlyapnikov G. V., J. Phys. IV, 116 (2004) 5.

    Google Scholar 

  38. Nelson D. R. and Kosterlitz J. M., Phys. Rev. Lett., 39 (1977) 1201.

    Article  ADS  Google Scholar 

  39. Minnhagen P. and Warren G. G., Phys. Rev. B, 24 (1981) 2526.

    Article  ADS  Google Scholar 

  40. Simula T. P. and Blakie P. B., Phys. Rev. Lett., 96 (2006) 020404.

    Article  ADS  Google Scholar 

  41. Giorgetti L., Carusotto I. and Castin Y., Phys. Rev. A, 76 (2007) 013613.

    Article  ADS  Google Scholar 

  42. Bisset R. N., Davis M. J., Simula T. P. and Blakie P. B., Phys. Rev. A, 79 (2009) 033626.

    Article  ADS  Google Scholar 

  43. Fisher D. S. and Hohenberg P. C., Phys. Rev. B, 37 (1988) 4936.

    Article  ADS  Google Scholar 

  44. Prokof’ev N. V. and Svistunov B. V., Phys. Rev. A, 66 (2002) 043608.

    Article  ADS  Google Scholar 

  45. Bramwell S. T. and Holdsworth P. C. W., Phys. Rev. B, 49 (1994) 8811.

    Article  ADS  Google Scholar 

  46. Leggett A. J., Physica Fennica, 8 (1973) 125.

    Google Scholar 

  47. Fisher M. E., Barber M. N. and Jasnow D., Phys. Rev. A, 8 (1973) 1111.

    Article  ADS  Google Scholar 

  48. Tiesinga E., Verhaar B. J. and Stoof H. T. C., Phys. Rev. A, 47 (1993) 4114.

    Article  ADS  Google Scholar 

  49. Inouye S., Andrews M., Stenger J., Miesner H. J., Stamper-Kurn D. M. and Ketterle W., Nature, 392 (1998) 151.

    Article  ADS  Google Scholar 

  50. Schrader D., Dotsenko I., Khudaverdyan M., Miroshnychenko Y., Rauschenbeutel A. and Meschede D., Phys. Rev. Lett., 93 (2004) 150501.

    Article  ADS  Google Scholar 

  51. Nelson K. D., Li X. and Weiss D. S., Nature Phys., 3 (2007) 556.

    Article  ADS  Google Scholar 

  52. Bakr W. S., Peng A., Folling S. and Greiner M., Nature, 462 (2009) 74.

    Article  ADS  Google Scholar 

  53. Gerbier F., Europhys. Lett., 66 (2004) 771.

    Article  ADS  Google Scholar 

  54. Bagnato V., Pritchard D. E. and Kleppner D., Phys. Rev. A, 35 (1987) 4354.

    Article  ADS  Google Scholar 

  55. Bagnato V. S. and Kleppner D., Phys. Rev. A, 44 (1991) 7439.

    Article  ADS  Google Scholar 

  56. Yukalov V. I., Phys. Rev. A, 72 (2005) 033608.

    Article  ADS  Google Scholar 

  57. Pitaevskii L. and Stringari S., Bose-Einstein Condensation (Oxford University Press, Oxford) 2003.

    MATH  Google Scholar 

  58. Pethick C. and Smith H., Bose-Einstein Condensation in Dilute Gases (Cambridge University Press) 2002.

    Google Scholar 

  59. Bhaduri R. K., Reimann S. M., Viefers S., Ghose Choudhury A. and Srivastava M. K., J. Phys. B: At. Mol. Opt. Phys., 33 (2000) 3895.

    Article  ADS  Google Scholar 

  60. Ho T. L. and Ma M., J. Low Temp. Phys., 115 (1999) 61.

    Article  ADS  Google Scholar 

  61. Fernández J. P. and Mullin W. J., J. Low Temp. Phys., 128 (2002) 233.

    Article  ADS  Google Scholar 

  62. Gies C. and Hutchinson D. A. W., Phys. Rev. A, 70 (2004) 043606.

    Article  ADS  Google Scholar 

  63. Lim L.-K., Smith C. M. and Stoof H. T. C., Phys. Rev. A, 78 (2008) 013634.

    Article  ADS  Google Scholar 

  64. Holzmann M., Baym G., Blaizot J. P. and Laloë F., Proc. Natl. Acad. Sci. U.S.A., 104 (2007) 1476.

    Article  ADS  Google Scholar 

  65. Holzmann M., Chevalier M. and Krauth W., EPL, 82 (2008) 30001.

    Article  ADS  Google Scholar 

  66. Hadzibabic Z., Kruger P., Cheneau M., Rath S. P. and Dalibard J., New J. Phys., 10 (2008) 045006.

    Article  ADS  Google Scholar 

  67. Görlitz A., Vogels J. M., Leanhardt A. E., Raman C., Gustavson T. L., Abo-Shaeer J. R., Chikkatur A. P., Gupta S., Inouye S., Rosenband T. and Ketterle W., Phys. Rev. Lett., 87 (2001) 130402.

    Article  ADS  Google Scholar 

  68. Rychtarik D., Engeser B., Nägerl H.-C. and Grimm R., Phys. Rev. Lett., 92 (2004) 173003.

    Article  ADS  Google Scholar 

  69. Gillen J. I., Bakr W. S., Peng A., Unterwaditzer P., Fölling S. and Greiner M., Phys. Rev. A, 80 (2009) 021602.

    Article  ADS  Google Scholar 

  70. Smith N. L., Heathcote W. H., Hechenblaikner G., Nugent E. and Foot C. J., J. Phys. B, 38 (2005) 223.

    Article  ADS  Google Scholar 

  71. Hinds E. A., Boshier M. G. and Hughes I. G., Phys. Rev. Lett., 80 (1998) 645.

    Article  ADS  Google Scholar 

  72. Zobay O. and Garraway B. M., Phys. Rev. Lett., 86 (2001) 1195.

    Article  ADS  Google Scholar 

  73. Colombe Y., Knyazchyan E., Morizot O., Mercier B., Lorent V. and Perrin H., Europhys. Lett., 67 (2004) 593.

    Article  ADS  Google Scholar 

  74. Hofferberth S., Lesanovsky I., Fischer B., Verdu J. and Schmiedmayer J., Nature Phys., 2 (2006) 710.

    Article  ADS  Google Scholar 

  75. Orzel C., Tuchmann A. K., Fenselau K., Yasuda M. and Kasevich M. A., Science, 291 (2001) 2386.

    Article  ADS  Google Scholar 

  76. Burger S., Cataliotti F. S., Fort C., Maddaloni P., Minardi F. and Inguscio M., Europhys. Lett., 57 (2002) 1.

    Article  ADS  Google Scholar 

  77. Köhl M., Moritz H., Stöferle T., Schori C. and Esslinger T., J. Low Temp. Phys., 138 (2005) 635.

    Article  ADS  Google Scholar 

  78. Morsch O. and Oberthaler M., Rev. Mod. Phys., 78 (2006) 179.

    Article  ADS  Google Scholar 

  79. Spielman I. B., Phillips W. D. and Porto J. V., Phys. Rev. Lett., 98 (2007) 080404.

    Article  ADS  Google Scholar 

  80. Hadzibabic Z., Stock S., Battelier B., Bretin V. and Dalibard J., Phys. Rev. Lett., 93 (2004) 180403.

    Article  ADS  Google Scholar 

  81. Stock S., Hadzibabic Z., Battelier B., Cheneau M. and Dalibard J., Phys. Rev. Lett., 95 (2005) 190403.

    Article  ADS  Google Scholar 

  82. Schweikhard V., Tung S. and Cornell E. A., Phys. Rev. Lett., 99 (2007) 030401.

    Article  ADS  Google Scholar 

  83. Sadler L. E., Higbie J. M., Leslie S. R., Vengalattore M. and Stamper-Kurn D. M., Nature, 443 (2006) 312.

    Article  ADS  Google Scholar 

  84. Petrov D. S., Holzmann M. and Shlyapnikov G. V., Phys. Rev. Lett., 84 (2000) 2551.

    Article  ADS  Google Scholar 

  85. Petrov D. S. and Shlyapnikov G. V., Phys. Rev. A, 64 (2001) 012706.

    Article  ADS  Google Scholar 

  86. Naidon P., Tiesinga E., Mitchell W. F. and Julienne P. S., New J. Phys., 9 (2007) 19.

    Article  ADS  Google Scholar 

  87. Schick M., Phys. Rev. A, 3 (1971) 1067.

    Article  ADS  Google Scholar 

  88. Popov V. N., Theor. Math. Phys., 11 (1972) 565.

    Article  Google Scholar 

  89. Andersen J., Eur. Phys. J. B, 28 (2002) 389.

    Article  ADS  Google Scholar 

  90. Pricoupenko L., Phys. Rev. A, 70 (2004) 013601.

    Article  ADS  Google Scholar 

  91. Pilati S., Boronat J., Casuelleras J. and Giorgini S., Phys. Rev. A, 71 (2005) 023605.

    Article  ADS  Google Scholar 

  92. Astrakharchik G. E., Boronat J., Casulleras J., Kurbakov I. L. and Lozovik Y. E., Phys. Rev. A, 79 (2009) 051602.

    Article  ADS  Google Scholar 

  93. Mora C. and Castin Y., Phys. Rev. Lett., 102 (2009) 180404.

    Article  ADS  Google Scholar 

  94. Holzmann M. and Krauth W., Phys. Lett. Lett., 100 (2007) 190402.

    Article  Google Scholar 

  95. Bisset R. N., Baillie D. and Blakie P. B., Phys. Rev. A, 79 (2009) 013602.

    Article  ADS  Google Scholar 

  96. Holzmann M., Chevallier M. and Krauth W., Phys. Rev. A, 81 (2010) 043622.

    Article  ADS  Google Scholar 

  97. Kadanoff L. and Baym G., Quantum Statistical Mechanics (Benjamin/Cummings Publishing Company) 1963.

    MATH  Google Scholar 

  98. Ozeri R., Steinhauer J., Katz N. and Davidson N., Phys. Rev. Lett., 88 (2002) 220401.

    Article  ADS  Google Scholar 

  99. Ketterle W. and Zwierlein M., in Ultra Cold Fermi Gases, Proceedings of the International School of Physics “Enrico Fermi”, edited by Inguscio M., Ketterle W. and Salomon C., Vol. CLXIV (SIF, Bologna; IOS Press, Amsterdam) 2007.

    Google Scholar 

  100. Holzmann M. and Krauth W., Private communication (June 2009).

    Google Scholar 

  101. Zhou Q. and Ho T.-L., Universal thermometry for quantum simulation, arXiv:0908.3015.

  102. Kagan Y., Surkov E. L. and Shlyapnikov G. V., Phys. Rev. A, 54 (1996) R1753.

    Article  ADS  Google Scholar 

  103. Castin Y. and Dum R., Phys. Rev. Lett., 77 (1996) 5315.

    Article  ADS  Google Scholar 

  104. Rath S., Yefsah T., Günter K. J., Cheneau M., Desbuquois M., Holzmann M., Krauth W. and Dalibard J., Phys. Rev. A, 82 (2010) 013609.

    Article  ADS  Google Scholar 

  105. Pitaevskii L. P. and Rosch A., Phys. Rev. A, 55 (1997) R853.

    Article  ADS  Google Scholar 

  106. Cornell E. A., Private communication (September 2009). See also: Tung S., Lamporesi G., Lobser D., Xia L. and Cornell E. A., Observation of the pre-superfluid regime in a two-dimensional Bose gas, arXiv:1009.2475.

  107. Dettmer S., Hellweg D., Ryyty P., Arlt J. J., Ertmer W., Sengstock K., Petrov D. S., Shlyapnikov G. V., Kreutzmann H., Santos L. and Lewenstein M., Phys. Rev. Lett., 87 (2001) 160406.

    Article  ADS  Google Scholar 

  108. Imambekov A., Mazets I. E., Petrov D. S., Gritsev V., Manz S., Hofferberth S., Schumm T., Demler E. and Schmiedmayer J., Phys. Rev. A, 80 (2009) 033604.

    Article  ADS  Google Scholar 

  109. Polkovnikov A., Altman E. and Demler E., Proc. Natl. Acad. Sci. U.S.A., 103 (2006) 6125.

    Article  ADS  Google Scholar 

  110. Imambekov A., Gritsev V. and Demler E., in Ultra Cold Fermi Gases, Proceedings of the International School of Physics “Enrico Fermi”, edited by Inguscio M., Ketterle W. and Salomon C., Vol. CLXIV (SIF, Bologna; IOS Press, Amsterdam) 2007.

  111. Andrews M. R., Townsend C. G., Miesner H. J., Durfee D. S., Kurn D. M. and Ketterle W., Science, 275 (1997) 637.

    Article  Google Scholar 

  112. Gritsev V., Altman E., Demler E. and Polkovnikov A., Nature Phys., 2 (2006) 705.

    Article  ADS  Google Scholar 

  113. Hofferbeth S., Lesanovsky I., Schumm T., Imambekov A., Gritsev V., Demler E. and Schmiedmayer J., Nature Phys., 4 (2008) 489.

  114. Burkov A. A., Lukin M. D. and Demler E., Phys. Rev. Lett., 98 (2007) 200404.

    Article  ADS  Google Scholar 

  115. Hofferberth S., Lesanovsky I., Fischer B., Schumm T. and Schmiedmayer J., Nature, 449 (2007) 324.

    Article  ADS  Google Scholar 

  116. Cazalilla M. A., Iucci A. and Giamarchi T., Phys. Rev. A, 75 (2007) 051603.

    Article  ADS  Google Scholar 

  117. Mathey L., Polkovnikov A. and Neto A. C., EPL, 81 (2008) 10008.

    Article  ADS  Google Scholar 

  118. Kestner J. P. and Duan L.-M., Phys. Rev. A, 74 (2006) 053606.

    Article  ADS  Google Scholar 

  119. Pricoupenko L., Phys. Rev. Lett., 100 (2008) 170404.

    Article  ADS  Google Scholar 

  120. Ho T.-L. and Zhou Q., Nature Phys., 6 (2010) 131.

    Article  ADS  Google Scholar 

  121. Cooper N. R. and Hadzibabic Z., Phys. Rev. Lett., 104 (2010) 030401.

    Article  ADS  Google Scholar 

  122. Lin Y.-J., Compton R. L., Jiméenez-García K., Porto J. V. and Spielman I. B., Nature, 462 (2009) 628.

    Article  ADS  Google Scholar 

  123. Hung C.-L., Zhang X., Gemelke N. and Chin C., Observation of scale invariance and universality in two-dimensional Bose gases, arXiv:1009.0016.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reproduced from Proceedings of the International School of Physics “Enrico Fermi”, Course CLXXIII “Nano Optics and Atomics: Transport of Light and Matter Waves”, edited by R. Kaiser, D. S. Wiersma and L. Fallani (IOS Press, Amsterdam and SIF, Bologna) 2011, pp. 273–322.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadzibabic, Z., Dalibard, J. Two-dimensional Bose fluids: An atomic physics perspective. Riv. Nuovo Cim. 34, 389–434 (2011). https://doi.org/10.1393/ncr/i2011-10066-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2011-10066-3

Navigation