Skip to main content
Log in

Fundamentals of nanostructured magnetic materials for spintronic devices

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

Spin electronics can be described as the marriage of magnetism with nanotechnology—or equally well, new electronic devices based on nanomagnetism. The goal is to actively manipulate the spin of the electron that modern microelectronics has heretofore mostly ignored. The rapid progress this field has seen in the last 15 years is largely due to our extensive knowledge base of nanomagnetism—the magnetic properties of materials as their dimensionality is reduced—combined with rapid progress in atomic control of the growth of different materials and heterostructures. The materials involved, metals, semiconductors and more recently strongly correlated oxides, offer many physical paradoxes that are not yet well understood, and so reside at the forefront of many theoretical and experimental investigations. And because these materials have potential to form the basis for future electronic devices with real advantages over existing schemes—new devices that depend on manipulation, generation and detection of spin and spin currents—these efforts are often placed in a clear technological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grynkewich G., Akerman J., Brown P., Butcher B., Dave R. W., DeHerrera M., Durlam M., Engel B. N., Janesky J., Pietambaram S., Rizzo N. D., Slaughter J. M., Smith K., Sun J. J. and Tehrani S., MRS Bull., 29 (2004) 818.

    Article  Google Scholar 

  2. Scott J. C., Science, 304 (2004) 62.

    Article  Google Scholar 

  3. Arimoto Y. and Ishiwara H., MRS Bull., 29 (2004) 823.

    Article  Google Scholar 

  4. Awschalom D. D., Loss D. and Samarth N. (Editors), Semiconductor Spintronics and Quantum Computation (Springer-Verlag, Berlin) 2002.

    Google Scholar 

  5. Ziese M. and Thornton M. J. (Editors), Spin Electronics (Springer-Verlag, Berlin) 2001.

    Google Scholar 

  6. Zutic I., Schmalian J. and Das Sarma S., Rev. Mod. Phys., 76 (2004) 323.

    Article  ADS  Google Scholar 

  7. Parkin S. S. P. et al., Proc. IEEE, 91 (2002) 661; Parkin S. S. P., to be published in Rev. Mod. Phys.

    Article  Google Scholar 

  8. Ziese M., Rep. Prog. Phys., 65 (2002) 143.

    Article  ADS  Google Scholar 

  9. Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnar S., Roukes M. L., Chtchelkanova A. Y. and Treger D. M., Science, 294 (2001) 1488.

    Article  ADS  Google Scholar 

  10. Das Sarma S., Hwang E. H. and Kaminski A., cond-mat/0304219 (2003).

    Google Scholar 

  11. Gregg J. F., Petej I., Jouguelet E. and Dennis C., J. Phys. D, 35 (2002) R121.

    Article  ADS  Google Scholar 

  12. Das Sarma S., Am. Sci., 89 (2001) 516.

    Article  ADS  Google Scholar 

  13. Dyakonoy M. I., cond-mat/0401369 (2004).

    Google Scholar 

  14. See, for example, issues of the MRS Bulletin, Vol. 28, No. 10 (2003) and Vol. 29, No. 11 (2004), and recent proceedings of the MRS meetings (Boston, 12/2000 and San Francisco, 4/1998).

    Google Scholar 

  15. See, for example, the Proceedings of the March 2004 American Physical Society Meeting, spintronic section.

  16. Mazin I. I., Phys. Rev. Lett., 83 (1999) 1427.

    Article  ADS  Google Scholar 

  17. Fert A. and Piraux L., J. Magn. & Magn. Mater., 200 (1999) 338.

    Article  ADS  Google Scholar 

  18. Mott N. F., Proc. R. Soc. London, 153 (1936) 699.

    ADS  Google Scholar 

  19. Mott N. F., Adv. Phys., 13 (1964) 325.

    Article  ADS  Google Scholar 

  20. Coey J. M. D. and Chien C. L., MRS Bull., 28 (2003) 720.

    Article  Google Scholar 

  21. Stephens J., Berezovsky J., McGuire J. P., Sham L. J., Gossard A. C. and Awschalom D. D., cond-mat/0401197.

  22. Kato Y. K., Myers R. C., Gossard A. C. and Awschalom D. D., Science, 306 (2004) 1910.

    Article  ADS  Google Scholar 

  23. Bychkoy Y. A. and Rashba E. I., J. Phys. C, 17 (1984) 6039.

    Article  ADS  Google Scholar 

  24. Datta S. and Das B., Appl. Phys. Lett., 56 (1990) 665.

    Article  ADS  Google Scholar 

  25. Nozieres J. and Schuller I. K., J. Magn. & Magn. Mater., 192 (1999) 203.

    Article  ADS  Google Scholar 

  26. Schuller I. K., MRS Bull., 9 (2004) 642.

    Article  Google Scholar 

  27. Wolf E. L., Principles of Electron Tunneling Spectroscopy (Oxford University Press, New York) 1985, Chaps. 1 and 2.

    Google Scholar 

  28. Tinkham M., Introduction to Superconductivity, second edition (McGraw-Hill, New York) 1996.

    Google Scholar 

  29. Julliere M., Phys. Lett. A, 54 (1975) 225.

    Article  ADS  Google Scholar 

  30. Gadzuk J. B., Phys. Rev., 182 (1969) 416; see, for example, Yusof Z. et al., Phys. Rev. B, 58 (1998) 514.

    Article  ADS  Google Scholar 

  31. See, for example, Wang D., Nordman C., Daughton J. M., Qian Z. and Fink J., IEEE Trans. Mag., 40 (2004) 2269.

  32. Parkin S. S. P., Kaiser C., Panchula A., Rice P. M., Hughes B., Samant M. and Yang S.-H., Nat. Mat., 3 (2004) 862.

    Article  Google Scholar 

  33. Yuasa S., Nagahama T., Fukushima A., Suzuki Y. and Ando K., Nat. Mat., 3 (2004) 868.

    Article  Google Scholar 

  34. de Teresa J. M., Barthelemy A., Fert A., Contour J.-P., Montaigne F. and Seneor P., Science, 286 (1999) 507.

    Article  Google Scholar 

  35. Belashchenko K. D., Tsymbal E. Y., van Schilfgaarde M., Stewart D. A., Oleynik I. I. and Jaswal S. S., Phys. Rev. B, 69 (2004) 174408.

    Article  ADS  Google Scholar 

  36. O’Donnell J., Andrus A. E., Oh S., Colla E. V. and Eckstein J. N., Appl. Phys. Lett., 76 (2000) 1914.

    Article  ADS  Google Scholar 

  37. Bowen M., Bibes M., Barthelemy A., Contour J.-P., Anane A., Lemaitre Y. and Fert A., Appl. Phys. Lett., 82 (2003) 233.

    Article  ADS  Google Scholar 

  38. Meseryey R. and Tedrow P. M., Phys. Rep., 238 (1994) 173.

    Article  ADS  Google Scholar 

  39. Tedrow P. M. and Meseryey R., Phys. Rev. B, 7 (1973) 318.

    Article  ADS  Google Scholar 

  40. De Gennes P., Superconductivity of Metals and Alloys (Addison-Wesley, New York) 1966.

    MATH  Google Scholar 

  41. Soulen R. J., Byers J. M., Osofsky M. S., Nadgorny B., Ambrose T., Cheng S. F., Broussard P. R., Tanaka C. T., Nowak J., Moodera J. S., Barry A. and Coey J. M. D., Science, 282 (1998) 85.

    Article  ADS  Google Scholar 

  42. Hartmann U. (Editor), Magnetic Multilayers and Giant Magnetoresistance (Springer-Verlag, Berlin) 1999.

    Google Scholar 

  43. Gijs M. A. M. and Bauer G. E. W., Adv. Phys., 46 (1997) 285.

    Article  ADS  Google Scholar 

  44. Bruno P., in Magnetism: Molecules to Materials III (Wiley-VCH, Weinheim) 2002, Chapter 9.

    Google Scholar 

  45. Baibich M. N., Broto J. M., Fert A., Nguyen Van Dau F., Petroff F., Eitenne P., Creuzet G., Friederich A. and Chazelas J., Phys. Rev. Lett., 61 (1988) 2472.

    Article  ADS  Google Scholar 

  46. Parkin S. S. P., More N. and Roche K. P., Phys. Rev. Lett., 64 (1990) 2304.

    Article  ADS  Google Scholar 

  47. Edwards D. M., Mathon J. and Muniz R. B., IEEE Trans. Mag., 27 (1991) 3548.

    Article  ADS  Google Scholar 

  48. Mathon J., Chapter 4 in ref. [5].

  49. See, for example, the review of “Magnetoelectronics” by Prinz G. A., Science, 282 (1998) 1660.

  50. Bruno P. and Chappert C., Phys. Rev. B, 46 (1992) 261.

    Article  ADS  Google Scholar 

  51. Bruno P., Phys. Rev. B, 52 (1995) 411.

    Article  ADS  Google Scholar 

  52. Berger L., Phys. Rev. B, 54 (1996) 9353.

    Article  ADS  Google Scholar 

  53. Slonczewski J., J. Magn. & Magn. Mater., 159 (1996) L1.

    Article  ADS  Google Scholar 

  54. Myers E. B. et al., Science, 285 (1999) 867.

    Article  Google Scholar 

  55. Krivorotov I. N., Emley N. C., Sandey J. C., Kiselev S. I., Ralph D. C. and Buhrman R. A., Science, 307 (2005) 228.

    Article  ADS  Google Scholar 

  56. Covington M., Science, 307 (2005) 215.

    Article  Google Scholar 

  57. Gareev R., Pohlmann L. L., Stein S., Burgler D. E. and Grunberg P. A., J. Appl. Phys., 93 (2003) 8038.

    Article  ADS  Google Scholar 

  58. Slonczewski J., Phys. Rev. B, 39 (1989) 6995.

    Article  ADS  Google Scholar 

  59. Kimura T., Tomioka Y., Kuwahara H., Asamitsu A., Tamura M. and Tokura Y., Science, 274 (1996) 1698.

    Article  ADS  Google Scholar 

  60. Goldman A. M., Science, 274 (1996) 1630.

    Article  ADS  Google Scholar 

  61. Perring T. G., Aeppli G., Kimura T., Tokura Y. and Adams M. A., Phys. Rev. B, 58 (1998) 14693.

    Article  ADS  Google Scholar 

  62. Zener C., Phys. Rev., 2 (1951) 403.

    Article  ADS  Google Scholar 

  63. Anderson P. and Hasegawa H., Phys. Rev., 100 (1955) 675.

    Article  ADS  Google Scholar 

  64. Ruddlesden S. N. and Popper P., Acta Crystallogr., 10 (1957) 538; ibidem,, 11 (1958) 54.

    Article  Google Scholar 

  65. Lettieri J., Haeni J. H. and Schlom D. G., J. Vac. Sci. Technol. A, 20 (2002) 1332.

    Article  ADS  Google Scholar 

  66. Haeni J. H. et al., Appl. Phys. Lett., 78 (2001) 3292.

    Article  ADS  Google Scholar 

  67. Moritomo Y., Asamitsu A., Kuwahara H. and Tokura Y., Nature, 380 (1996) 141.

    Article  ADS  Google Scholar 

  68. Park J.-H., Vescovo E., Kim H.-J., Kwon C., Ramesh R. and Venkatesan T., Nature, 392 (1998) 794.

    Article  ADS  Google Scholar 

  69. Salamon M. B. and Jaime M., Rev. Mod. Phys., 73 (2003) 583.

    Article  ADS  Google Scholar 

  70. Tokura Y. (Editor), Colossal Magnetoresistive Oxides (Gordon and Breach, Australia) 2000.

    Google Scholar 

  71. Coey J. M. D., Viret M. and von Molnar S., Adv. Phys., 48 (1999) 167.

    Article  ADS  Google Scholar 

  72. Jin S., McCormack M., Tiefel T. H. and Ramesh R., J. Appl. Phys., 76 (1994) 6929.

    Article  ADS  Google Scholar 

  73. Rodriguez-Martinez L. M. and Attfield J. P., Phys. Rev. B, 54 (1996) 15622.

    Article  ADS  Google Scholar 

  74. Rodriguez-Martinez L. M. and Attfield J. P., Phys. Rev. B, 58 (1998) 2426.

    Article  ADS  Google Scholar 

  75. Radaelli P. G., Cox D. E., Marezio M., Cheong S.-W., Schiffer P. E. and Ramirez A. P., Phys. Rev. Lett., 75 (1995) 4488.

    Article  ADS  Google Scholar 

  76. Fath M., Freisem S., Menovsky A. A., Tomioka Y., Aarts J. and Mydosh J. A., Science, 285 (1999) 1540.

    Article  Google Scholar 

  77. Renner Ch., Aeppli G., Kim B.-G., Soh Y.-A. and Cheong S.-W., Nature, 416 (2002) 518.

    Article  ADS  Google Scholar 

  78. Zhang L., Israel C., Biswas A., Greene R. L. and de Lozanne A., Science, 298 (2002) 805.

    Article  ADS  Google Scholar 

  79. Mathur N. and Littlewood P., Phys. Today, 56 (2003) 25.

    Article  ADS  Google Scholar 

  80. Uehara M., Mori S., Chen C. H. and Cheong S.-W., Nature, 399 (1999) 560.

    Article  ADS  Google Scholar 

  81. Schiffer P., Ramirez A. P., Bao W. and Cheong S.-W., Phys. Rev. Lett., 75 (1995) 3336.

    Article  ADS  Google Scholar 

  82. Ahn K. H., Lookman T. and Bishop A. R., Nature, 428 (2004) 401.

    Article  ADS  Google Scholar 

  83. Burgy J., Moreo A. and Dagotto E., Phys. Rev. Lett., 92 (2004) 097202.

    Article  ADS  Google Scholar 

  84. Tokura Y., Kuwahara H., Moritomo Y., Tomioka Y. and Asamitsu A., Phys. Rev. Lett., 76 (1996) 3184.

    Article  ADS  Google Scholar 

  85. Kiryukhin V., Casa D., Hill J. P., Keimer B., Vigliante A., Tomioka Y. and Tokura Y., Nature, 386 (1997) 813.

    Article  ADS  Google Scholar 

  86. See, for example, Khomskii D., Chapter 5 of ref. [5].

  87. See, for example, Ashcroft N. W. and Mermin N. D., Solid State Physics (Saunders College, Philadelphia) 1976, Chapter 32.

  88. Zaanen J., Sawatzky G. A. and Allen J., Phys. Rev. Lett., 55 (1985) 418.

    Article  ADS  Google Scholar 

  89. Anderson P. W., Phys. Rev., 79 (1950) 350.

    Article  ADS  Google Scholar 

  90. Goodenough J. B., Phys. Rev., 100 (1955) 564.

    Article  ADS  Google Scholar 

  91. Kanamori J., J. Phys. Chem. Solids, 10 (1959) 87.

    Article  ADS  Google Scholar 

  92. Goodenough J. B., Magnetism and Chemical Bond (Interscience, New York) 1963.

    Google Scholar 

  93. Medyedeya J. E., Korotin M. A., Anisimoy V. I. and Freeman A. J., Phys. Rev. B, 65 (2002) 172413.

    Article  ADS  Google Scholar 

  94. Keller G., Held K., Eyert V., Vollhardt D. and Anisimoy V. I., Phys. Rev. B, 70 (2004) 205116.

    Article  ADS  Google Scholar 

  95. Nekrasoy I. A., Streltsoy S. V., Korotin M. A. and Anisimoy V. I., Phys. Rev. B, 68 (2003) 235113.

    Article  ADS  Google Scholar 

  96. Tokura Y. and Nagaosa N., Science, 288 (2000) 462.

    Article  ADS  Google Scholar 

  97. Konishi Y., Fang Z., Izumi M., Manako T., Kasai M., Kuwahara H., Kawasaki M., Terakura K. and Tokura Y., Jpn. J. Appl. Phys., 68 (1999) 3790.

    Article  Google Scholar 

  98. Binggeli N. and Altarelli M., New J. Phys., 6 (2004) 165.

    Article  ADS  Google Scholar 

  99. Akahoshi D., Uchida M., Tomioka Y., Arima T., Matsui Y. and Tokura Y., Phys. Rev. Lett., 90 (2003) 177203.

    Article  ADS  Google Scholar 

  100. Motome Y., Furukawa N. and Nagaosa N., Phys. Rev. Lett., 91 (2003) 167204.

    Article  ADS  Google Scholar 

  101. Shannon R. D., Acta Crystallogr. A, 32 (1976) 751; note that the ionic radii depend on the coordination with the surrounding oxygen atoms.

    Article  ADS  Google Scholar 

  102. Larochelle S., Mehta A., Kaneko N., Mang P. K., Panchula A. F., Zhou L., Arthur J. and Greyen M., Phys. Rev. Lett., 87 (2001) 095502.

    Article  ADS  Google Scholar 

  103. Wilkins S. B., Spencer P. D., Hatton P. D., Collins S. P., Roper M. D., Prabhakaran D. and Boothroyd A. T., Phys. Rev. Lett., 90 (2003) 187201; 91 (2003) 167205.

    Article  ADS  Google Scholar 

  104. Wilkins S. B., Stojic N., Beale T. A. W., Binggeli N., Castleton C. W. M., Bencok P., Prabhakaran D., Boothroyd A. T., Hatton P. D. and Altarelli M., cond-mat/0410713.

  105. Ueda K., Tabata H. and Kawai T., Science, 280 (1998) 1064.

    Article  ADS  Google Scholar 

  106. Wold A. and Croft W., J. Phys. Chem., 63 (1959) 447.

    Article  Google Scholar 

  107. Garcia V., Bibes M., Barthélémy A., Bowen M., Jacquet E., Contour J.-P. and Fert A., Phys. Rev. B, 69 (2004) 052403.

    Article  ADS  Google Scholar 

  108. See, for example, Chapters 9 and 10 of ref. [70].

  109. Yamada H., Ogawa Y., Ishii Y., Sato H., Kawasaki M., Akoh H. and Tokura Y., Science, 305 (2004) 646.

    Article  ADS  Google Scholar 

  110. Tufte O. N. and Chapman P. W., Phys. Rev., 155 (1967) 796.

    Article  ADS  Google Scholar 

  111. Pellegrino L., Pallecchi I., Marre D., Bellingeri E. and Siri A. S., Appl. Phys. Lett., 81 (2002) 3849.

    Article  ADS  Google Scholar 

  112. Muller D. A., Nakagawa N., Ohtomo A., Grazul J. L. and Hwang H. Y., Nature, 430 (2004) 657.

    Article  ADS  Google Scholar 

  113. Mannhart J. and Schlom D. G., Nature, 430 (2004) 620.

    Article  ADS  Google Scholar 

  114. Ohtomo A. and Hwang H. Y., Nature, 427 (2004) 423.

    Article  ADS  Google Scholar 

  115. Noguera C., J. Phys. Condens. Matter, 12 (2000) R367.

    Article  ADS  Google Scholar 

  116. Okamoto S. and Millis A. J., Nature, 428 (2004) 630.

    Article  ADS  Google Scholar 

  117. Ohtomo A., Muller D. A., Grazul J. L. and Hwang H. Y., Nature, 419 (2002) 378.

    Article  ADS  Google Scholar 

  118. Tokura Y. et al., Phys. Rev. Lett., 70 (1993) 2126.

    Article  ADS  Google Scholar 

  119. Imada M., Fujimori A. and Tokura Y., Rev. Mod. Phys., 70 (1998) 1039.

    Article  ADS  Google Scholar 

  120. Efremov D. V., Van den Brink J. and Khomskii D. I., Nat. Mat., 3 (2004) 853.

    Article  Google Scholar 

  121. Ederer C. and Spaldin N., Nat. Mat., 3 (2004) 849.

    Article  Google Scholar 

  122. Hill N. A., Annu. Rev. Mat. Sci., 32 (2002) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, B.A. Fundamentals of nanostructured magnetic materials for spintronic devices. Riv. Nuovo Cim. 30, 159–195 (2007). https://doi.org/10.1393/ncr/i2007-10019-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2007-10019-5

Navigation