Skip to main content

Atomic-Scale Spintronics

  • Reference work entry
Handbook of Spintronics

Abstract

The developments of novel spintronic materials and spin-based electronic devices are hot topics of current research in materials science and solid-state physics. Both research fields could profit tremendously from atomic-scale insight into magnetic properties and spin-dependent interactions at the atomic level. Based on the development of spin-polarized scanning tunneling microscopy (SP-STM), the novel method of single-atom magnetometry has recently been established. It allows the measurement of magnetization curves and the determination of magnetic moments on an atom-by-atom basis. While the sensitivity level of single-atom magnetometry is below one Bohr magneton, it can easily be combined with the atomic-resolution imaging and manipulation capabilities of conventional STM, thereby offering a novel approach toward a rational material design based on the knowledge of the atomic-level properties and interactions within the solid state. Moreover, an atom-by-atom design and realization of all-spin logic devices has recently been demonstrated based on the combined knowledge derived from surface physics, nanoscience, and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiesendanger R, Shvets IV, Bürgler D, Tarrach G, Güntheroth H, Coey J, Gräser S (1992) Topographic and magnetic-sensitive scanning tunneling microscope study of magnetite. Science 255(5044):583

    Article  ADS  Google Scholar 

  2. Heinze S, Bode M, Kubetzka A, Pietzsch O, Nie X, Blügel S, Wiesendanger R (2000) Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288(5472):1805, ISSN 0036–8075

    Article  ADS  Google Scholar 

  3. Koltun R, Herrmann M, Güntherodt G, Brabers VAM (2001) Enhanced atomic-scale contrast on Fe3O4(100) observed with an Fe STM Tip. Appl Phys A 73(1):49

    Article  ADS  Google Scholar 

  4. Yang H, Smith AR, Prikhodko M, Lambrecht WRL (2002) Atomic-scale spin-polarized scanning tunneling microscopy applied to Mn3N2(010). Phys Rev Lett 89(22):226101

    Article  ADS  Google Scholar 

  5. Kubetzka A, Ferriani P, Bode M, Heinze S, Bihlmayer G, von Bergmann K, Pietzsch O, Blügel S, Wiesendanger R (2005) Revealing antiferromagnetic order of the Fe monolayer on W(001): spin-polarized scanning tunneling microscopy and first-principles calculations. Phys Rev Lett 94(8):087204

    Article  ADS  Google Scholar 

  6. Bode M, Vedmedenko E, von Bergmann K, Kubetzka A, Ferriani P, Heinze S, Wiesendanger R (2006) Atomic spin structure of anti-ferromagnetic domain walls. Nat Mater 5(6):477

    Article  ADS  Google Scholar 

  7. Gao CL, Schlickum U, Wulfhekel W, Kirschner J (2007) Mapping the surface spin structure of large unit cells: reconstructed Mn films on Fe(001). Phys Rev Lett 98(10):107203

    Article  ADS  Google Scholar 

  8. Wiesendanger R, Güntherodt H-J, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247

    Article  ADS  Google Scholar 

  9. Bode M, Getzlaff M, Wiesendanger R (1998) Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001). Phys Rev Lett 81(19):4256

    Article  ADS  Google Scholar 

  10. Kleiber M, Bode M, Ravlic R, Wiesendanger R (2000) Topology-induced spin frustrations at the Cr(001) surface studied by spin-polarized scanning tunneling spectroscopy. Phys Rev Lett 85(21):4606

    Article  ADS  Google Scholar 

  11. Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495

    Article  ADS  Google Scholar 

  12. Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Blügel S, Wiesendanger R (2007) Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447(7141):190

    Article  ADS  Google Scholar 

  13. Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S (2011) Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat Phys 7(9):713

    Article  Google Scholar 

  14. Serrate D, Ferriani P, Yoshida Y, Hla S-W, Menzel M, von Bergmann K, Heinze S, Kubetzka A, Wiesendanger R (2010) Imaging and manipulating the spin direction of individual atoms. Nat Nanotechnol 5(5):350

    Article  ADS  Google Scholar 

  15. Meier F, Zhou L, Wiebe J, Wiesendanger R (2008) Revealing magnetic interactions from single-atom magnetization curves. Science 320(5872):82

    Article  ADS  Google Scholar 

  16. Zhou L, Wiebe J, Lounis S, Vedmedenko E, Meier F, Blügel S, Dederichs PH, Wiesendanger R (2010) Strength and directionality of surface Ruderman-Kittel-Kasuya-Yosida interaction mapped on the atomic scale. Nat Phys 6:187

    Article  Google Scholar 

  17. Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2011) Realizing all-spin based logic operations atom by atom. Science 332(6033):1062

    Article  ADS  Google Scholar 

  18. Krause S, Berbil-Bautista L, Herzog G, Bode M, Wiesendanger R (2007) Current-induced magnetization switching with a spin-polarized scanning tunneling microscope. Science 317(5844):1537

    Article  ADS  Google Scholar 

  19. Herzog G, Krause S, Wiesendanger R (2010) Heat assisted spin torque switching of quasistable nanomagnets across a vacuum gap. Appl Phys Lett 96(10):102505

    Article  ADS  Google Scholar 

  20. Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522

    Article  ADS  Google Scholar 

  21. Schmidt R, Lazo C, Hoelscher H, Pi UH, Caciuc V, Schwarz A, Wiesendanger R, Heinze S (2009) Probing the magnetic exchange forces of iron on the atomic scale. Nano Lett 9(1):200

    Article  ADS  Google Scholar 

  22. Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455

    Article  ADS  Google Scholar 

  23. Sáenz JJ, García N, Grütter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber HR, Güntherodt H-J (1987) Observation of magnetic forces by the atomic force microscope. J Appl Phys 62(10):4293

    Article  ADS  Google Scholar 

  24. Schwarz A, Liebmann M, Kaiser U, Wiesendanger R, Noh T, Kim D (2004) Visualization of the Barkhausen effect by magnetic force microscopy. Phys Rev Lett 92(7):077206

    Article  ADS  Google Scholar 

  25. Ashino M, Obergfell D, Haluska M, Yang S, Khlobystov AN, Roth S, Wiesendanger R (2008) Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat Nanotechnol 3(6):337

    Article  ADS  Google Scholar 

  26. Khajetoorians AA, Chilian B, Wiebe J, Schuwalow S, Lechermann F, Wiesendanger R (2010) Detecting excitation and magnetization of individual dopants in a semiconductor. Nature 467(7319):1084

    Article  ADS  Google Scholar 

  27. Chilian B, Khajetoorians AA, Wiebe J, Wiesendanger R (2011) Experimental variation and theoretical analysis of the inelastic contribution to atomic spin excitation spectroscopy. Phys Rev B 83(19):195431

    Article  ADS  Google Scholar 

  28. Whitman LJ, Stroscio JA, Dragoset RA, Celotta RJ (1990) Scanning-tunneling-microscopy study of InSb(110). Phys Rev B 42(11):7288

    Article  ADS  Google Scholar 

  29. Morgenstern M, Wiebe J, Marczinowski F, Wiesendanger R (2010) Scanning tunneling spectroscopy on III-V materials: effects of dimensionality, magnetic field, and magnetic impurities. In: Quantum materials, nanoscience and technology, chapter 9. Springer, Ed.: Heitmann, Springer Verlag Berlin, Heidelberg pp 217–243

    Google Scholar 

  30. Marczinowski F, Wiebe J, Tang J-W, Flatté ME, Meier F, Morgenstern M, Wiesendanger R (2007) Local electronic structure near Mn acceptors in InAs: surface-induced symmetry breaking and coupling to host states. Phys Rev Lett 99(15):157202

    Article  ADS  Google Scholar 

  31. Marczinowski F, Wiebe J, Meier F, Hashimoto K, Wiesendanger R (2008) Effect of charge manipulation on scanning tunneling spectra of single Mn acceptors in InAs. Phys Rev B 77(11):115318

    Article  ADS  Google Scholar 

  32. Kitchen D, Richardella A, Tang J-M, Flatté ME, Yazdani A (2006) Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442:436

    Article  ADS  Google Scholar 

  33. Yakunin AW, Silov AY, Koenraad PM, Wolter JH, Van Roy W, De Boeck J, Tang JM, Flatté ME (2004) Spatial structure of an individual Mn acceptor in GaAs. Phys Rev Lett 92(21):216806

    Article  ADS  Google Scholar 

  34. Yakunin AM, Silov AY, Koenraad PM, Tang JM, Flatté ME, Van Roy W, De Boeck J, Wolter JH (2005) Spatial structure of Mn-Mn acceptor pairs in GaAs. Phys Rev Lett 95(25):256402

    Article  ADS  Google Scholar 

  35. Yakunin AM, Silov AY, PKoenraad PM, Tang JM, Flatté ME, Primus JL, Van Roy W, De Boeck J, Monakhov AM, Romanov KS, Panaiotti IE, Averkiev NS (2007) Warping a single Mn acceptor wavefunction by straining the GaAs host. Nat Mater 6(7):512

    Article  ADS  Google Scholar 

  36. Hashimoto K, Sohrmann C, Wiebe J, Inaoka T, Meier F, Hirayama Y, Römer RA, Wiesendanger R, Morgenstern M (2008) Quantum hall transition in real space: from localized to extended states. Phys Rev Lett 101(25):256802

    Article  ADS  Google Scholar 

  37. Aristov VY, Lay GL, Soukiassian P, Hricovini K, Bonnet JE, Osvald J, Olsson O (1994) Alkali-metal-induced highest fermi-level pinning position above semiconductor conduction band minimum. EPL Europhys Lett 26(5):359

    Article  ADS  Google Scholar 

  38. Masutomi R, Hio M, Mochizuki T, Okamoto T (2007) Quantum hall effect at cleaved InSb surfaces and low-temperature annealing effect. Appl Phys Lett 90(20):202104

    Article  ADS  Google Scholar 

  39. Roth LM, Lax B, Zwerdling S (1959) Theory of optical magneto-absorption effects in semiconductors. Phys Rev 114(1):90

    Article  ADS  Google Scholar 

  40. Bemski G (1960) Spin resonance of conduction electrons in InSb. Phys Rev Lett 4(2):62

    Article  ADS  Google Scholar 

  41. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732

    Article  ADS  Google Scholar 

  42. Heinrich AJ, Gupta J, Lutz CP, Eigler DM (2004) Single-atom spin-flip spectroscopy. Science 306(5695):466

    Article  ADS  Google Scholar 

  43. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford, 2001 Evans Road Cary, NC 27513 USA

    Book  Google Scholar 

  44. Hirjibehedin CF, Lutz CP, Heinrich AJ (2006) Spin coupling in engineered atomic structures. Science 312(5776):1021

    Article  ADS  Google Scholar 

  45. Lorente N, Gauyacq JP (2009) Efficient spin transitions in inelastic electron tunneling spectroscopy. Phys Rev Lett 103:176601

    Article  ADS  Google Scholar 

  46. Gauyacq JP, Novaes FD, Lorente N (2010) Magnetic transitions induced by tunneling electrons in individual adsorbed M-phthalocyanine molecules (M = Fe and Co). Phys Rev B 81(16):165423

    Article  ADS  Google Scholar 

  47. Fernández-Rossier J (2009) Theory of single-spin inelastic tunneling spectroscopy. Phys Rev Lett 102:256802

    Article  ADS  Google Scholar 

  48. Fransson J (2009) Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface. Nano Lett 9(6):2414

    Article  ADS  Google Scholar 

  49. Persson M (2009) Theory of inelastic electron tunneling from a localized spin in the impulsive approximation. Phys Rev Lett 103:050801

    Article  ADS  Google Scholar 

  50. Delgado F, Fernández-Rossier J (2011) Cotunneling theory of atomic spin inelastic electron tunneling spectroscopy. Phys Rev B 84:045439

    Article  ADS  Google Scholar 

  51. Loth S, Lutz CP, Heinrich AJ (2010) Spin-polarized spin excitation spectroscopy. New J Phys 12(12):125021

    Article  Google Scholar 

  52. Chilian B (2011) Single and coupled magnetic atoms investigated by low-temperature STM and model calculations. PhD thesis, University of Hamburg

    Google Scholar 

  53. Loth S, Etzkorn M, Lutz CP, Eigler DM, Heinrich AJ (2010) Measurement of fast electron spin relaxation times with atomic resolution. Science 329(5999):1628

    Article  ADS  Google Scholar 

  54. Balashov T, Schuh T, Takács AF, Ernst A, Ostanin S, Henk J, Mertig I, Bruno P, Miyamachi T, Suga S, Wulfhekel W (2009) Magnetic anisotropy and magnetization dynamics of individual atoms and clusters of Fe and Co on Pt(111). Phys Rev Lett 102(25):257203

    Article  ADS  Google Scholar 

  55. Khajetoorians AA, Lounis S, Chilian B, Costa AT, Zhou L, Mills DL, Wiebe J, Wiesendanger R (2011) Itinerant nature of atom-magnetization excitation by tunneling electrons. Phys Rev Lett 106(3):037205

    Article  ADS  Google Scholar 

  56. Chilian B, Khajetoorians AA, Lounis S, Costa AT, Mills DL, Wiebe J, Wiesendanger R (2011) Anomalously large g factor of single atoms adsorbed on a metal substrate. Phys Rev B 84:212401

    Article  ADS  Google Scholar 

  57. Iacovita C, Rastei MV, Heinrich BW, Brumme T, Kortus J, Limot L, Bucher JP (2008) Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys Rev Lett 101(11):116602

    Article  ADS  Google Scholar 

  58. Brede J, Atodiresei N, Kuck S, Lazić P, Caciuc V, Morikawa Y, Hoffmann G, Blügel S, Wiesendanger R (2010) Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys Rev Lett 105(4):047204

    Article  ADS  Google Scholar 

  59. Atodiresei N, Brede J, Lazić P, Caciuc V, Hoffmann G, Wiesendanger R, Blügel S (2010) Design of the local spin polarization at the organic-ferromagnetic interface. Phys Rev Lett 105(6):066601

    Article  ADS  Google Scholar 

  60. Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou JG, Zhu Q (2005) Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309(5740):1542

    Article  ADS  Google Scholar 

  61. Hewson A (1997) The Kondo problem to heavy fermions. Cambridge University Press, New York, 40 West 20th Street, New York, NY 10011–4211, USA

    Google Scholar 

  62. Chen X, Fu Y-S, Ji S-H, Zhang T, Cheng P, Ma XC, Zou XL, Duan W-H, Jia J-F, Xue Q-K (2008) Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys Rev Lett 101(19):197208

    Article  ADS  Google Scholar 

  63. Tsukahara N, Noto KI, Ohara M, Shiraki S, Takagi N, Takata N, Miyawaki J, Taguchi M, Chainani A, Shin S, Kawai M (2009) Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys Rev Lett 102(16):167203

    Article  ADS  Google Scholar 

  64. Bode M, von Bergmann K, Pietzsch O, Kubetzka A, Wiesendanger R (2006) Spin-polarized scanning tunneling spectroscopy of dislocation lines in Fe films on W(110). J Magn Magn Mater 304(1):1

    Article  ADS  Google Scholar 

  65. Bode M, Heinze S, Kubetzka A, Pietzsch O, Nie X, Bihlmayer G, Blügel S, Wiesendanger R (2002) Magnetization-direction-dependent local electronic structure probed by scanning tunneling spectroscopy. Phys Rev Lett 89(23):237205

    Article  ADS  Google Scholar 

  66. Bode M, Pascal R, Dreyer M, Wiesendanger R (1996) Nanostructural and local electronic properties of Fe/W(110) correlated by scanning tunneling spectroscopy. Phys Rev B 54(12):R8385

    Article  ADS  Google Scholar 

  67. Kubetzka A, Bode M, Pietzsch O, Wiesendanger R (2002) Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips. Phys Rev Lett 88(5):057201

    Article  ADS  Google Scholar 

  68. Meckler S, Mikuszeit N, Pressler A, Vedmedenko EY, Pietzsch O, Wiesendanger R (2009) Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet. Phys Rev Lett 103(15):157201

    Article  ADS  Google Scholar 

  69. Hipps F, Lu X, Wang X, Mazur U (1996) Metal d-orbital occupation-dependent images in the scanning tunneling microscopy of metal phthalocyanines. J Phys Chem 100(27):11207

    Article  Google Scholar 

  70. Gartland PO, Slagsvold BJ (1975) Transitions conserving parallel momentum in photoemission from the (111) face of copper. Phys Rev B 12:4047

    Article  ADS  Google Scholar 

  71. Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262(5131):218

    Article  ADS  Google Scholar 

  72. Stoner EC (1939) Collective electron ferromagnetism. II. Energy and specific heat. Proc R Soc Lond A Math Phys Sci 169(938):339

    Article  MATH  ADS  Google Scholar 

  73. Eigler DM, Schweizer E (1990) Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266):524

    Article  ADS  Google Scholar 

  74. Stroscio JA, Eigler DM (1991) Atomic and molecular manipulation with the scanning tunneling microscope. Science 254(5036):1319

    Article  ADS  Google Scholar 

Further Reading

  • Wiesendanger R (1994) Scanning probe microscopy and spectroscopy: methods and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wiesendanger R (1998) In: Wiesendanger R (ed) Analytical methods in scanning probe microscopy. Springer series in nano science and technology. Spin-Polarized Scanning Tunneling Microscopy, Springer, Berlin/Heidelberg/New York, p 71

    Google Scholar 

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft via SFB 668, from the EU via the ERC Advanced Grant FURORE, and from the Cluster of Excellence NANOSPINTRONICS, funded by the Forschungs- und Wissenschaftsstiftung Hamburg, is gratefully acknowledged. A. A. Khajetoorians acknowledges funding from the Emmy Noether Program DFG KH324/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Brede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Brede, J., Chilian, B., Khajetoorians, A.A., Wiebe, J., Wiesendanger, R. (2016). Atomic-Scale Spintronics. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_30

Download citation

Publish with us

Policies and ethics