Skip to main content
Log in

The theory of irreversible processes: Foundations of a non-equilibrium statistical ensemble formalism

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

A general overview on the construction of a non-equilibrium statistical mechanics ensemble formalism is presented. Such construction has been approached along the recently past twentieth century by a pleiad of distinguished scientists, their work being subsumed in a large systematization in the form of a physically sound, general and useful, theoretical framework. It includes their contributions and also incorporates some extensions and generalizations. The present contribution has been organized in sixteen items and five appendices where the main questions associated to such construction are considered and discussed. Among them are the relevant ones of choice of the basic variables, the questions of historicity and irreversibility and the approach to equilibrium. The derivation of a non-equilibrium grand-canonical statistical operator is presented. In terms of it a statistical irreversible thermodynamics can be built, which provides microscopic (mechano-statistical) foundations to phenomenological extended irreversible thermodynamics. It also provides a statistical non-linear higher-order hydrodynamics, including fluctuations, thus providing a unification of the kinetics and hydrodynamic approaches. Moreover, a brief description of an all-important accompanying non-linear quantum kinetic theory of relaxation processes is presented, as well as a response function theory and a fluctuation-dissipation theorem for far-fromequilibrium systems. The aspect of validation of the theory (comparison of theory and experiment) is reviewed in compact form. Furthermore, the derivation of the formalism is briefly discussed within the scope of a variational principle in an approach associated to information theory. Considerations on the question of the use of the formalism for dealing with systems with complex structure, small systems, and other particular situations, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbs J. W., Elementary Principles in Statistical Mechanics (Yale University Press, New Haven, USA) 1902; (Dover, New York, USA) 1960.

    MATH  Google Scholar 

  2. Boltzmann L., Vorlesungen über Gastheorie, Vols. 1 and 2 (Barth, Leipzig, Germany) 1896 and 1898. English translation by Brush S. G. (Univ. California Press, Berkeley, USA) 1964.

    MATH  Google Scholar 

  3. Maxwell J. C., The Collected Papers of J. C. Maxwell, edited by Niven W. R. (Dover, New York, USA) 1965.

  4. Sklar L., Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics (Cambridge Univ. Press, Cambridge, UK) 1993.

    Book  Google Scholar 

  5. Jancel R., Foundations of Classical and Quantum Statistical Mechanics (Pergamon, Oxford, UK) 1969.

    Google Scholar 

  6. Casimir H. G. B., “On Onsager’s principle of microscopic reversibility”, Rev. Mod. Phys., 17 (1945) 343.

    Article  ADS  Google Scholar 

  7. Penrose O., “Foundations of statistical mechanics”, Rep. Prog. Phys., 42 (1979) 1938.

    Article  ADS  Google Scholar 

  8. Kubo R., “Oppening address at the Oji Seminar”, Prog. Theor. Phys. (Jpn.), Suppl., 64 (1978) 1.

    Article  ADS  Google Scholar 

  9. Jaynes E. T., Predictive Statistical Mechanics, in Frontiers of Non-equilibrium Statistical Physics, edited by Moore G. T., Scully M. O. (Plenum, New York, USA) 1986, pp. 33–55

    Google Scholar 

  10. Jaynes E. T., Reprinted articles and additional notes in Jaynes Papers on Probability, Statistics, and Statistical Physics, edited by Rosenkrantz R. D. (Reidel- Kluwer, Dordrecht, The Netherlands) 1983.

  11. Dougherty J. P., Approaches to non-equilibrium statistical mechanics, in Maximum Entropy and Bayesian Method, edited by Skilling J. (Kluwer Academic, Dordrecht, The Netherlands) 1989, pp. 131–6.

    Chapter  Google Scholar 

  12. Zwanzig R., Where do we go from here? in Perspectives in Statistical Physics, edited by Ravechè H. J. (North Holland, Amsterdam, The Netherlands) 1981, p. 123.

    Google Scholar 

  13. Luzzi R., Vasconcellos A. R., Ramos J. G., Predictive Statistical Mechanics: A Non-equilibrium Ensemble Formalism (Kluwer Academic, Dordrecht, The Netherlands) 2002.

    Book  MATH  Google Scholar 

  14. Bogoliubov N. N., Problems of a dynamical theory in Statistical Physics, in Studies in Statistical Mechanics I, edited by de Boer J., Uhlenbeck G. E. (North Holland, Amsterdam, The Netherlands) 1962.

    Google Scholar 

  15. Peierls R., Some simple remarks on the basis of transport theory, in Transport phenomena, Lecture Notes in Phys., Vol. 31, edited by Ehlers J., Hepp K. and Weidenmüller H. A. (Springer, Berlin, Germany) 1974.

    Google Scholar 

  16. Kirkwood J. G., “The statistical mechanical theory of transport processes”, J. Chem. Phys., 14 (1946) 180.

    Article  ADS  Google Scholar 

  17. Mori H., Oppenheim I., Ross J., Some topics in quantum statistics, in Studies in Statistical Mechanics I, edited by de Boer J., Uhlenbeck G. E. (North Holland, Amsterdam, The Netherlands) 1962, pp. 217–98.

    Google Scholar 

  18. Fano U., “Description of states in quantum mechanics by density matrix and operator techniques”, Rev. Mod. Phys., 29 (1957) 74.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bogoliubov N. N., Lectures in Quantum Statistics, Vols. 1 and 2 (Gordon and Breach, New York, USA) 1967 and 1970, respectively.

    Google Scholar 

  20. Feynman R., Statistical Mechanics (Benjamin, Reading, USA) 1972.

    Google Scholar 

  21. Kreuzer H. J., Non-equilibrium Thermodynamics and its Statistical Foundations (Clarendon, Oxford, UK) 1981.

    Google Scholar 

  22. Balescu R., Equilibrium and Non-equilibrium Statistical Mechanics (Wiley-Interscience, New York, USA) 1975.

    MATH  Google Scholar 

  23. Uhlenbeck G. E., The Boltzmann equation, in Lectures in Statistical Mechanics, edited by Kac M. (Am. Math. Soc., Providence, USA) 1963, pp. 183–203.

    Google Scholar 

  24. Baldin A. M., Kadyshevskii V. G., Sissakian A. N., “Obituary: N. N. Bogoliubov”, Phys. Today, 46 (1993) 101.

    Article  Google Scholar 

  25. Logunov A. A., Vladimorov V. S., “N. N. Bogoliubov on his 70th birthday”, Theor. Math. Phys., 40 (1980) 655.

    Article  Google Scholar 

  26. Salam A., Vladimorov V. S., Logunov A. A., “Tribute ‘In memoriam of Nicolai N. Bogoliubov’ ”, Theor. Math. Phys., 92 (1993) 817.

    Article  Google Scholar 

  27. Vladimorov V. S., Logunov A. A., “N. N. Bogoliubov, Fifty years of scientific work”, Theor. Math. Phys., 21 (1975) 1155.

    Article  Google Scholar 

  28. Robertson B., “Introduction to field operators in quantum mechanics”, Am. J. Phys., 41 (1973) 678.

    Article  ADS  MathSciNet  Google Scholar 

  29. Taylor P. L., A Quantum Approach to the Solid State (Prentice-Hall, Englewood Cliffs, USA) 1970.

    Google Scholar 

  30. Ziman J. M., Elements of Advanced Quantum Theory (Cambridge Univ. Press, Cambridge, UK) 1969.

    MATH  Google Scholar 

  31. Krylov N. S., Works on the Foundations of Statistical Mechanics, with an Introdu ction by Migdal A. B., Fock V. A. (Princeton Univ. Press, Princeton, USA) 1979.

    Google Scholar 

  32. Prigogine I., From Being to Becoming (Freeman, San Francisco, USA) 1980.

    Google Scholar 

  33. Bogoliubov jr. N. N., A Method for Studying Model Hamiltonians (Pergamon, Oxford, UK) 1972.

    Google Scholar 

  34. Zubarev D. N., Non-equilibrium Statistical Thermodynamics (Consultants Bureau, New York, USA) 1974 [Neravnovesnaia Statisticheskaia Termodinamika (Izd. Nauka, Moscow, 1971)].

    Google Scholar 

  35. Gell-Mann M., Goldberger M. L., “The formal Theory of Scattering”, Phys. Rev., 91 (1953) 398.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Prigogine I., “Dissipative structures, dynamics, and entropy”, Int. J. Quantum Chem., 9 (1975) 443.

    Article  Google Scholar 

  37. Lebowitz J. L., “Boltzmann’s Entropy and Time’s Arrow”, Phys. Today, 46 (1993) 32.

    Article  Google Scholar 

  38. Lebowitz J. L., “Is Boltzmann’s entropy time-arrow’s archer?”, Phys. Today (Letters), 47 (1994) 115.

    Google Scholar 

  39. Alvarez-Romero J. T. and Garcia-Colin L. S., “The foundations of informational statistical thermodynamics revisited”, Physica A, 232 (1996) 207.

    Article  ADS  Google Scholar 

  40. Chester G. V., “The theory of irreversible processes”, Rep. Prog. Phys., 26 (1963) 411.

    Article  ADS  MATH  Google Scholar 

  41. Zwanzig R., Statistical mechanics of irreversibility, in Lectures in Theoretical Physics, edited by Brittin W. E., Downs B. W., Downs J., Vol. 3 (Wiley-Interscience, New York, USA) 1961.

    MATH  Google Scholar 

  42. Weiss U., Quantum Dissipative Systems (World Scientific, Singapore) 1993.

    Book  MATH  Google Scholar 

  43. Mori H., “Transport, collective motion, and Brownian motion”, Progr. Theor. Phys. (Jpn.), 33 (1965) 423.

    Article  ADS  MATH  Google Scholar 

  44. Feynman R. P., Vernon F. L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys. (N.Y.), 24 (1963) 118.

    Article  ADS  MathSciNet  Google Scholar 

  45. van Hove L., “Correlations in space and time and Born approximation scattering in systems of interacting particles”, Phys. Rev., 95 (1954) 249.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hassan S. A., Vasconcellos A. R., Luzzi R., “The informational-statisticalentropy operator in a non-equilibrium ensemble formalism”, Physica A, 262 (1999) 359.

    Article  ADS  Google Scholar 

  47. Luzzi R., Vasconcellos A. R., Ramos J. G., Statistical Foundations of Irreversible Thermodynamics (Teubner-Bertelsmann Springer, Stuttgart, Germany) 2000.

    Book  MATH  Google Scholar 

  48. Luzzi R., Vasconcellos A. R., Ramos J. G., “Irreversible Thermodynamics in a non-equilibrium statistical ensemble formalism”, Riv. Nuovo Cimento, 24 (2001) 1.

    Google Scholar 

  49. Truesdell C., Rational Thermodynamics (McGraw-Hil, New York, USA) 1985; second enlarged edition (Springer, Berlin, Germany) 1988.

    MATH  Google Scholar 

  50. Courant R., Hilbert D., Methods of Mathematical Physics (Wiley-Interscience, New York, USA) 1953.

    MATH  Google Scholar 

  51. Sklar L., Theory and Truth: Philosophical Critique within Foundational Science (Oxford Univ. Press, Oxford, UK); see also ref. [76].

  52. Ramos J. G., Vasconcellos A. R., Luzzi R., “A non-equilibrium ensemble formalism: Criterion for truncation of description”, J. Chem. Phys., 112 (2000) 2692.

    Article  ADS  Google Scholar 

  53. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics I: General Theory”, Phys. Rev. A, 43 (1991) 6622.

    Article  ADS  Google Scholar 

  54. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics II: An example from semiconductor physics”, Phys. Rev. A, 43 (1991) 6633.

    Article  ADS  Google Scholar 

  55. Zwanzig R., “Non-linear Transport Equations from Statistical Mechanics”, Prog. Theor. Phys., Suppl. 64 (1978) 74.

    Article  Google Scholar 

  56. Grabert H., Projection Operator Techniques in Non-equilibrium Statistics (Springer, Berlin, Germany) 1981.

    Google Scholar 

  57. McLennan J. A., “Statistical Theory of Transport Processes”, in Adv. Chem. Phys., Vol. 5 (Academic, New York, USA) 1963, pp. 261–317.

    Google Scholar 

  58. Peletminskii S. V., Yatsenko A. A., “Contribution to the quantum theory of kinetic and relaxation processes”, JETP, 26 (1968) 773.

    ADS  Google Scholar 

  59. Robertson B., “Equations of motion in non-equilibrium statistical mechanics”, Phys. Rev., 144 (1966) 151.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Robertson B., Application of maximum entropy to non-equilibrium statistical mechanics, in The Maximum Entropy Formalism (MIT Press, Cambridge, USA) 1978, pp. 289–320.

    Google Scholar 

  61. Lauck L., Vasconcellos A. R., Luzzi R., “A non-linear quantum transport theory”, Physica A, 168 (1990) 789.

    Article  ADS  Google Scholar 

  62. Grad H., Principles of the kinetic theory of gases, in Handbuch der Physik XII, edited by Flügge S. (Springer, Berlin, Germany) 1958, pp. 205–94.

    Google Scholar 

  63. Luzzi R., Vasconcellos A. R., “The basic principles of irreversible thermodynamics in the context of an informational-statistical approach”, Physica A, 241 (1997) 677.

    Article  ADS  Google Scholar 

  64. Ciccoti G., Hoover W. G. (Editors), Molecular Dynamics Simulations of Statistical Mechanical Systems, Proc. Int. School of Physics “Enrico Fermi” (North Holland, Amsterdam, The Netherlands) 1986.

    Google Scholar 

  65. Martin P. C., Measurements and correlation functions, in Many-Body Physics, edited by Witt C. D., Balian R. (Gordon and Breach, New York, USA) 1968, pp. 37–136.

    Google Scholar 

  66. Zubarev D. N., “Double-time Green functions in statistical physics”, Uspekhi, 3 (1960) 320.

    Article  MathSciNet  Google Scholar 

  67. Vasconcellos A. R., Mesquita M. V., Ramos J. G., Luzzi R., Response Function Theory and Generalized Fluctuation- Dissipation Theorem in a Non-equilibrium Ensemble Formalism, IFGW- Unicamp Internal Report, and future publication (2005).

    Google Scholar 

  68. Vasconcellos A. R., Mesquita M. V., Ramos J. G., Luzzi R., Scattering Theory in a Non-equilibrium Ensemble Formalism, IFGW-Unicamp Internal Report, and future publication (2005).

    Google Scholar 

  69. Gould S. J., Dinosaur in a Haystack (Random House, New York, USA) 1995.

    Book  Google Scholar 

  70. Alfano R. R. (Editor), Biological Events Probed by Ultrafast Laser Spectroscopy (Academic, New York, USA) 1982.

    Google Scholar 

  71. Alfano R. R. (Editor), Semiconductors Probed by Ultrafast Laser Spectroscopy, Vols. 1 and 2 (Academic, New York, USA) 1984 and 1985, respectively.

    Google Scholar 

  72. Alfano R. R., Frontiers of femtosecond and picosecond optical measuring techniques, in New Techniques and Ideas in Quantum Measurement Theory, edited by Greenberger D. M., Vol. 480 of NYAS Annals (New York Academy of Science, New York, USA) 1986, pp. 118–26.

    Google Scholar 

  73. Driels J. S., Rudolph W., Ultrafast Laser Pulse Phenomena (Academic, New York, USA) 1996.

    Google Scholar 

  74. Harris C. B., Ippen E. P., Mourou G. A., Zenwail A. H., Ultrafast Phenomena (Springer, Berlin, Germany) 1989.

    Google Scholar 

  75. Hopkings J. M., Sibbet W., “Ultrashort-pulse lasers: Big payoffs in a flash”, Scientific American, 283 (2000) 54.

    Article  Google Scholar 

  76. Born M., Experiment and Theory in Physics (Dover, New York, USA) 1956.

    MATH  Google Scholar 

  77. Cushing J. T., Philosophical Concepts in Physics (Cambridge Univ. Press, Cambridge, UK) 1998.

    Book  MATH  Google Scholar 

  78. Heisenberg W., The Physical Conception of Nature (Hutchinson, London, UK) 1958.

    MATH  Google Scholar 

  79. Heisenberg W., The notion of a “closed theory” in modern science, in Across the Frontiers, edited by Anshen R. N. (Harper and Row, New York, USA) 1975, pp. 39–46.

    Google Scholar 

  80. Hawking S., The Nature of Space and Time (Princeton Univ. Press, Princeton, USA) 1996.

    Book  MATH  Google Scholar 

  81. Luzzi R., Vasconcellos A. R., Ramos J. G., “A non-equilibrium statistical ensemble formalism. MaxEnt-NESOM: Basic concepts, construction, application, open questions and criticism”, Int. J. Mod. Phys. B, 14 (2000) 3189.

    Article  ADS  MATH  Google Scholar 

  82. Rodrigues C. G., Vasconcellos A. R., Luzzi R., “A Kinetic Theory for Non-linear Quantum Transport”, Transp. Theor. Stat. Phys., 29 (2000) 733.

    Article  ADS  MATH  Google Scholar 

  83. Maxwell J. C., “On the dynamical theory of gases”, Philos. Trans. R. Soc. (London), 157 (1867) 49.

    Article  ADS  Google Scholar 

  84. Jou D., Casas-Vazquez J., Lebon G., “Extended irreversible thermodynamics”, Rep. Prog. Phys., 51 (1988) 1105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Fisher R. A., “On the Mathematical Foundations of Theoretical Statistics”, Philos. Trans. R. Soc. London A, 222 (1922) 309.

    Article  ADS  MATH  Google Scholar 

  86. Haken H., Synergetics (Springer, Berlin, Germany) 1978.

    Book  MATH  Google Scholar 

  87. Stix G., “Little big Science: An Overview (and articles thereafter)”, Scientific American, 285 (2001) 26.

    Google Scholar 

  88. Meixner J., Thermodynamics of irreversible processes has many faces, in Irreversible Processes of Continuum Mechanics, edited by Parkus H., Sedov L. (Springer, Wien, Austria) 1968, pp. 237–49.

    Google Scholar 

  89. Brush S. G., The Kind of Motion We Call Heat (North Holland, Amsterdam, The Netherlands) 1976.

    Google Scholar 

  90. Dougal A. A., Goldstein L., “Energy exchange between electron and ion gases through Coulomb collisions in plasma”, Phys. Rev., 109 (1958) 615.

    Article  ADS  Google Scholar 

  91. Landau L. D., “The transport equation in the case of Coulomb interactions”, Zh. Eksp. Teor. Fiz., 7 (1937) 203.

    MATH  Google Scholar 

  92. Abragam A., The Principles of Nuclear Magnetism (Oxford University Press, Oxford, UK) 1961.

    Google Scholar 

  93. Casimir H. B. G. and du Pre F. K., “Thermodynamic interpretation of paramagnetic relaxation phenomena”, Physica, 5 (1938) 507.

    Article  ADS  Google Scholar 

  94. Wang-Chang C. S., Uhlenbeck G. E., The Kinetic Theory of Gases (North Holland, Amsterdam, The Netherlands) 1964.

    Google Scholar 

  95. Fröhlich H., “On the theory of dielectric breakdown in solids”, Proc. R. Soc. (London) A, 188 (1947) 521.

    ADS  Google Scholar 

  96. Shklovskii V. A., “Heating of electrons as the cause of hysteresis of the critical current in the resistive state of superconductors”, Solid State, 17 (1976) 2040.

    Google Scholar 

  97. Shah J., Leite R. C. C., “Radiative recombination from photoexcited hot carriers in GaAs”, Phys. Rev. Lett., 22 (1969) 1304.

    Article  ADS  Google Scholar 

  98. Shah J., Leite R. C. C., Scott J. F., “Photoexcited hot LO phonons in GaAs”, Solid State Commun., 8 (1970) 1089.

    Article  ADS  Google Scholar 

  99. Casas-Vazquez J., Jou D., “Non-equilibrium temperature versus local-equilibrium temperature”, Phys. Rev. E, 49 (1994) 1040.

    Article  ADS  Google Scholar 

  100. Casas-Vazquez J., Jou D., “On a phenomenological non-equilibrium entropy for a class of rigid heat conductors”, J. Phys. A: Math. Gen., 14 (1981) 1225.

    Article  ADS  Google Scholar 

  101. Jou D., Casas-Vazquez J. and Criado-Sancho M., Thermodynamics of Fluids under Flow (Springer, Berlin, Germany) 2001.

    Book  MATH  Google Scholar 

  102. Jou D., Casas-Vazquez J., Lebon G., “Questions and answers about a thermodynamic theory of the third type”, Contemporary Phys., 33 (1992) 41.

    Article  ADS  Google Scholar 

  103. Jou D., Casas-Vazquez J., Lebon G., “Extended irreversible thermodynamics revisited”, Rep. Prog. Phys., 62 (1999) 1035.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Jou D. and Casas-Vazquez J., “Possible experiment to check the reality of a nonequilibrium temperature”, Phys. Rev. A, 45 (1992) 8371.

    Article  ADS  Google Scholar 

  105. Keizer J., “Fluctuations, stability, and generalized state functions at non-equilibrium steady states”, J. Chem. Phys., 65 (1976) 4431.

    Article  ADS  MathSciNet  Google Scholar 

  106. Keizer J., “Thermodynamics at non-equilibrium steady states”, J. Chem. Phys., 69 (1978) 2609.

    Article  ADS  MathSciNet  Google Scholar 

  107. Keizer J., “Heat, work, and the thermodynamic temperature at non-equilibrium steady states”, J. Chem. Phys., 82 (1985) 2751.

    Article  ADS  MathSciNet  Google Scholar 

  108. Keizer J., Statistical Thermodynamics of Irreversible Processes (Springer, Berlin, Germany) 1987.

    Google Scholar 

  109. Meixner J., Entropy and entropy production, in Foundations of Continuum Thermodynamics, edited by Delgado J. J., Nina M. N. R., Whitelaw J. H. (McMillan, London, UK) 1974, pp. 129–41.

    Google Scholar 

  110. Muschik W., “Empirical foundation and axiomatic treatment of non-equilibrium temperature”, Arch. Ration. Mech. Anal., 66 (1977) 379.

    Article  MathSciNet  Google Scholar 

  111. Nettleton R. E., “On the relation between thermodynamic temperature and kinetic energy per particle”, Can. J. Phys., 72 (1993) 106.

    Article  ADS  Google Scholar 

  112. Casas-Vazquez J., Jou D., “Temperature in Non-equilibrium Steady-Sates: A critical review of open problems and proposals”, Rep. Prog. Phys., 66 (2003) 1937.

    Article  ADS  Google Scholar 

  113. de Donder T., L’Affinite (Gauthier-Villars, Paris, France) 1936.

    MATH  Google Scholar 

  114. Onsager L., “Reciprocal relations in irreversible processes”, Phys. Rev., 37 (1931) 405.

    Article  ADS  MATH  Google Scholar 

  115. Onsager L., Machlup S., “Fluctuations and irreversible processes I”, Phys. Rev., 91 (1953) 1505.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Zubarev D. N., Morosov V. and Röpke R., Statistical Mechanics of Non-equilibrium Processes, Vol. 2: Relaxation and Hydrodynamic Processes (Akademie–Wiley VCH, Berlin, Germany) 1997.

    Google Scholar 

  117. Groot S. de and Mazur P., Non-equilibrium Thermodynamics (North Holland, Amsterdam, The Netherlands) 1962.

    MATH  Google Scholar 

  118. Prigogine I., Etude Thermodinamique des Phenomenes Irreversibles (Desoer, Liége, Belgium) 1947.

    Google Scholar 

  119. Glansdorff P., Prigogine I., Thermodynamic Theory of Structure, Stability, and Fluctuations (Wiley-Interscience, New York, USA) 1971.

    MATH  Google Scholar 

  120. Anderson P. W., “More is different: broken symmetry and nature of hierarchical structure of science”, Science, 177 (1972) 393.

    Article  ADS  Google Scholar 

  121. Anderson P. W., “Is Complexity Physics? Is it Science? What is it?” Phys. Today, 44 (1991) 9.

    Article  Google Scholar 

  122. Gell-Mann M., “What is Complexity?” Complexity, 1 (1995) 16.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Nicolis G., Prigogine I., Self-organization in Non-equilibrium Systems (Wiley- Interscience, New York, USA) 1977.

    MATH  Google Scholar 

  124. Prigogine I., Structure, dissipation, and life, in From Theoretical Physics to Biology, edited by Marois M. (North Holland, Amsterdam, The Netherlands) 1969.

    Google Scholar 

  125. Tisza L., Concluding remarks, in Thermodynamics: History and Philosophy, edited by Martinas K., Ropolyi L., Szegedi P. (World Scientific, Singapore) 1991, pp. 515–22.

    Google Scholar 

  126. Drago A., The alternative content of thermodynamics, in Thermodynamics: History and Philosophy, edited by Martinas K., Ropolyi L., Szegedi P. (World Scientific, Singapore) 1991, pp. 329–45.

    Google Scholar 

  127. Martinas K., Aristotelian thermodynamics, in Thermodynamics: History and Philosophy, edited by Martinas K., Ropolyi L., Szegedi P. (World Scientific, Singapore) 1991, pp. 285–303.

    Chapter  Google Scholar 

  128. Eu B. C. and Garcia-Colin L. S., “Irreversible processes and temperature”, Phys. Rev. E, 54 (1996) 2501.

    Article  ADS  Google Scholar 

  129. Eu B. C., “Form of uncompensated heat giving rise to a Pffafian differential form in thermodynamic space”, Phys. Rev. E, 51 (1995) 768.

    Article  ADS  Google Scholar 

  130. Eu B. E., Non-equilibrium Statistical Mechanics: Ensemble Method (Kluwer Academic, Dordrecht, The Netherlands) 1998.

    Book  MATH  Google Scholar 

  131. Garcia-Colin L. S., Rodriguez R. F., “On the relationship between extended irreversible thermodynamics and the wave approach to thermodynamics”, J. Non-Equil. Thermodyn., 13 (1988) 81.

    Article  ADS  MATH  Google Scholar 

  132. Garcia-Colin L. S., Uribe F., “Extended irreversible thermodynamics beyond the linear regime: A critical overview”, J. Non-Equil. Thermodyn., 16 (1991) 89–128.

    Google Scholar 

  133. Garcia-Colin L. S., “Extended non-equilibrium Thermodynamics, scope and limitations”, Rev. Mex. Fis. (Mexico), 34 (1988) 344.

    Google Scholar 

  134. Jou D., Casas-Vazquez J., Lebon G., Extended Irreversible Thermodynamics (Springer, Berlin, Germany) 1993. Second edition (Springer, Berlin, Germany) 1996; third enlarged edition (Springer, Berlin, Germany) 2001.

    Book  MATH  Google Scholar 

  135. Müller I., Ruggeri T., Extended Thermodynamics (Springer, Berlin, Germany) 1993.

    Book  MATH  Google Scholar 

  136. Grmela M., “Thermodynamics of driven systems”, Phys. Rev. E, 48 (1993) 919.

    Article  ADS  MathSciNet  Google Scholar 

  137. Landsberg P. T., “Foundations of thermodynamics”, Rev. Mod. Phys., 28 (1956) 363.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  138. Landsberg P. T., Thermodynamics with Quantum Statistical Illustration (Interscience, New York, USA) 1961.

    Book  MATH  Google Scholar 

  139. Hobson A., “Irreversibility and Information in Mechanical Systems”, J. Chem. Phys., 45 (1966a) 1352.

    Article  ADS  Google Scholar 

  140. Hobson A., “Irreversibility in simple systems”, Am. J. Phys., 34 (1966b) 411.

    Article  ADS  Google Scholar 

  141. Grandy W. T., Principles of Statistical Mechanics, Vols. 1 and 2 (Reidler-Kluwer, Dordrecht, The Netherlands) 1987 and 1988.

  142. Jaynes E. T., “Information Theory and Statistical Mechanics I”, Phys. Rev., 106 (1957) 620.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  143. Jaynes E. T., “Information Theory and Statistical Mechanics II”, Phys. Rev., 108 (1957) 171.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  144. Garcia-Colin L. S., Vasconcellos A. R., Luzzi R., “On informational statistical thermodynamics”, J. Non-Equilib. Thermodyn., 19 (1994) 24.

    Article  ADS  MATH  Google Scholar 

  145. Luzzi R., Vasconcellos A. R., Ramos J. G., “On the statistical foundations of irreversible thermodynamics”, Fortschr. Phys./ Prog. Phys., 47 (1999) 401.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  146. Sieniutycz S., Salamon P., Introductory remarks in diversity of non-equilibrium theories and extremum principles, in Advances in Thermodynamics, edited by Sieniutycz S., Salamon P., Vol. 3 (Taylor and Francis, New York, USA) 1990.

  147. Nettleton R. E., “Non-linear reciprocity in extended thermodynamics from the Robertson formalism”, Euro. Phys. J. B, 17 (2000) 429.

    Article  ADS  Google Scholar 

  148. Nettleton R. E., “Statistical bases for extended thermodynamics of diffusion in dense fluids”, J. Chem. Phys., 99 (1993) 3059.

    Article  ADS  MathSciNet  Google Scholar 

  149. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics (I): General theory”, Phys. Rev. A, 43 (1991) 6622.

    Article  ADS  Google Scholar 

  150. Nettleton R. E., Sobolev S. L., “Applications of extended thermodynamics to chemical, rheological, and transport processes: A special survey”, J. Non-Equil. Thermodyn., 19 (1995) 205.

    MATH  Google Scholar 

  151. Tenan M. A., Vasconcellos A. R., Luzzi R., “Statistical foundations of generalized non-equilibrium thermodynamics”, Fortschr. Phys./Prog. Phys., 47 (1997) 1.

    ADS  MATH  Google Scholar 

  152. Nettleton R. E., “Reciprocity and consistency in non-local extended thermodynamics”, Open Systems and Information Dynamics, 2 (1993) 41.

    Article  MATH  Google Scholar 

  153. Freidkin E. S., Nettleton R. E., “Consistency between maximum-entropy formalism and H-theorem”, Nuovo Cimento B, 104 (1989) 597.

    Article  ADS  MathSciNet  Google Scholar 

  154. Nettleton R. E., “Corrections to maximum entropy for steady-state conduction”, J. Phys. A, 22 (1989) 5281.

    Article  ADS  MathSciNet  Google Scholar 

  155. Nettleton R. E., “The Gibbs equation from maximum entropy”, J. Chem. Phys., 93 (1990) 8247.

    Article  ADS  Google Scholar 

  156. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics (III): Generalized constitutive equations”, J. Non-Equilib. Thermodyn., 20 (1995) 103.

    ADS  MATH  Google Scholar 

  157. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics (IV): Diffusive and wave thermal motion”, J. Non-Equilib. Thermodyn., 20 (1995) 119.

    ADS  Google Scholar 

  158. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics (V): Memory-dependent constitutive equations”, J. Mod. Phys., 9 (1995) 1933.

    Article  ADS  Google Scholar 

  159. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics (VI): Equations of evolution nonlinear in the fluxes in Informational Statistical Thermodynamics”, J. Mod. Phys., 9 (1995) 1945.

    Article  ADS  Google Scholar 

  160. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics (VII): Response function theory for thermal perturbations in Informational Statistical Thermodynamics”, Physica A, 221 (1995) 478.

    Article  ADS  Google Scholar 

  161. Vasconcellos A. R., Luzzi R. and Garcia-Colin L. S., “A microscopic approach to Irreversible Thermodynamics (VIII): Diffusion and mobility and generalized Einstein relation”, Physica A, 221 (1995) 495.

    Article  ADS  Google Scholar 

  162. Hawking S., The arrow of time, in 1990—Yearbook of Science and the Future, (Encyclopaedia Britannica, Chicago, USA) 1989, pp. 44–53.

    Google Scholar 

  163. Price H., Time’s Arrow and Archimedes’ Point (Oxford Univ. Press, Oxford, UK) 1996.

    Google Scholar 

  164. Rosenfeld L., “On the foundations of statistical thermodynamics”, Acta Phys. Polonica, 14 (1955) 3–29.

    MathSciNet  MATH  Google Scholar 

  165. Rosenfeld L., Questions of irreversibility and ergodicity, in Proceedings of the International School of Physics “Enrico Fermi”, Cou rse XIV, edited by Caldirola P. (Academic, New York, USA) 1960, pp. 1–20.

    Google Scholar 

  166. Rosenfeld L., A question of physics, in Conversations in Physics and Biology, edited by Buckley P., Peat D. (Univ. Toronto Press, Toronto, Canada) 1979.

    Google Scholar 

  167. Dougherty J. P., “Explaining statistical mechanics”, Stud. Philos. Sci., 24 (1993) 843.

    MathSciNet  MATH  Google Scholar 

  168. Dougherty J. P., “Foundations of non-equilibrium statistical mechanics”, Philos. Trans. R. Soc. London A, 346 (1994) 259.

    Article  ADS  MATH  Google Scholar 

  169. Hasegawa H. H., Driebe D. J., “Intrinsic irreversibility and the validity of the kinetic description of chaotic systems”, Phys. Rev. E, 50 (1994) 1781.

    Article  ADS  MathSciNet  Google Scholar 

  170. Makey M. C., “The dynamic origin of increasing entropy”, Rev. Mod. Phys., 61 (1989) 981.

    Article  ADS  Google Scholar 

  171. Nicolis G., Prigogine I., Exploring Complexity (Freeman, New York, USA) 1989.

    MATH  Google Scholar 

  172. Babloyantz A., Molecules, Dynamics and Life: An Introduction to Self-Organization of Matter (Wiley, New York, USA) 1986.

    Google Scholar 

  173. Nicolis G., Physics of far-from-equilibrium systems and self-organization, in The New Physics, edited by Davies P. (Cambridge Univ. Press, Cambridge, UK) 1989, pp. 316–47.

    Google Scholar 

  174. Prigogine I., Stengers I., Order out of Chaos: Man’s New Dialogue with Nature (Bantam, New York, USA) 1984.

    Google Scholar 

  175. Fonseca A. F., Mesquita M. V., Vasconcellos A. R., Luzzi R., “Informationalstatistical thermodynamics of a complex system”, J. Chem. Phys., 112 (2000) 3967.

    Article  ADS  Google Scholar 

  176. Mesquita M. V., Vasconcellos A. R., Luzzi R., Mascarenhas S., “Systems Biology”, Braz. J. Phys., 34 (2004) 459.

    Article  ADS  Google Scholar 

  177. Mesquita M. V., Vasconcellos A. R., Luzzi R., “Selective amplification of coherent polar vibrations in biopolymers”, Phys. Rev. E, 48 (1993) 4049.

    Article  ADS  Google Scholar 

  178. Vasconcellos A. R., Mesquita M. V., Luzzi R., “Complex behavior in biosystems: an information-theoretic approach”, Chaos, Solitons, Fract., 11 (2000) 1313.

    Article  ADS  Google Scholar 

  179. Penrose R., Shadows of the Mind: A search for the missing science of consciousness (Oxford University Press, Oxford, UK) 1994.

    MATH  Google Scholar 

  180. Mesquita M. V., Vasconcellos A. R., Luzzi R., “Considerations on Fröhlich’s non-equilibrium Bose-Einstein-like condensation”, Phys. Lett. A, 238 (1998) 206.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  181. Mesquita M. V., Vasconcellos A. R., Luzzi R., “Positive-feedback-enhanced Fröhlich’s condensation in biosystems”, Int. J. Quantum Chem., 66 (1998) 177.

    Article  Google Scholar 

  182. Mesquita M. V., Vasconcellos A. R., Luzzi R., “Complexity in biological systems”, Contemporary Physics, 40 (1999) 247.

    Article  ADS  Google Scholar 

  183. Lauck L., Vasconcellos A. R., Luzzi R., “On Fröhlich’s coherent effects in biological systems: Influence of carriers and high-order dissipative effects”, J. Theor. Biol., 158 (1992) 1.

    Article  Google Scholar 

  184. Fröhlich H., “Evidence for Bose-condensation-like excitation of coherent modes in biological systems”, Phys. Lett. A, 51 (1975) 21.

    Article  ADS  Google Scholar 

  185. Scott A. C., Chu F. Y. and McLaughlin S. W., “The soliton: A new concept in applied science”, Proc. IEEE, 61 (1973) 1443.

    Article  ADS  MathSciNet  Google Scholar 

  186. Heger A. J., Kivelson S., Schrieffer J. R., Su W. P., “Solitons in conducting polymers” Rev. Mod. Phys., 60 (1988) 781.

    Article  ADS  Google Scholar 

  187. Herschbach D. R., The next 35 years of chemistry, The Sciences, Suppl., Fin-de-siècle perspectives (New York Academy of Sciences, New York, USA) 1996.

    Google Scholar 

  188. Kivelson A. S., Soliton model of polyacetylene, in Solitons, edited by Trullinger S. E., Zahkarov V. E., Prokovsky V. L. (Elsevier, New York, USA) 1986, pp. 301–87.

    Chapter  Google Scholar 

  189. Leutwyler K., “Plastic power”, Scientific American, 275 (1996) 25.

    Article  Google Scholar 

  190. Davydov A. S., “Theory of contraction of proteins under their excitation”, J. Theor. Biol., 38 (1973) 559.

    Article  Google Scholar 

  191. Vasconcellos A. R., Luzzi R., “Vanishing thermal damping of Davydov’s solitons”, Phys. Rev. E, 48 (1993) 2246.

    Article  ADS  Google Scholar 

  192. Mesquita M. V., Vasconcellos A. R., Luzzi R., “Near-dissipationless coherent excitations in biosystems”, Int. J. Quantum Chem., 60 (1996) 689.

    Article  Google Scholar 

  193. Vasconcellos A. R., Mesquita M. V., Luzzi R., “Solitary wave excitation in acetanilide”, Phys. Rev. Lett., 80 (1998) 2008.

    Article  ADS  Google Scholar 

  194. Klimontovich Yu. L., “On the Need and the Possibility of a Unified Description of Kinetic and Hydrodynamic Processes”, Theor. Math. Phys., 92 (1992) 909.

    Article  MATH  Google Scholar 

  195. Burnett D., “The Distribution of molecular velocities and the mean motion in a nonuniform gas”, Proc. London Math Soc., 40 (1995) 382.

    MATH  Google Scholar 

  196. Guyer R. A., Krumhansl J. A., “Solution of the linearized Boltzmann equation”, Phys. Rev., 148 (1996) 766.

    Article  ADS  Google Scholar 

  197. Garcia-Colin L. S., “On the Burnett and higher-order equations of hydrodynamics”, Physica A, 118 (1983) 341.

    Article  ADS  Google Scholar 

  198. Hess S., “On non-local constitutive relations, continued-fraction expansion for the wave vector dependent diffusion coefficient”, Zeit. Naturforsh., 32 (1977) 678.

    Article  ADS  Google Scholar 

  199. Chiu C-L. and Thung N-C., “Maximum Velocity and Regularities in Open-Channel Flow”, J. Hydraul. Eng., 126 (2002) 1.

    Google Scholar 

  200. Witten T. A., “Insights from soft condensed matter”, Rev. Mod. Phys. (APS Centenary Issue) 71 (1999) S367.

    Article  Google Scholar 

  201. Kee D. de and Wissbrun K. F., “Polymer Rheology”, Phys. Today, 51 (1998) 24.

    Article  Google Scholar 

  202. Uribe F. J., Velasco R. M., Garcia-Colin L. S. and Diaz-Herrera, “Shock wave profiles in the Burnett approximation”, Phys. Rev. E, 62 (2000) 6648.

    Article  ADS  MathSciNet  Google Scholar 

  203. Uribe F. J. and Garcia-Colin L. S., “Non-linear viscosity and Grad’s methods”, Phys. Rev. E, 60 (1999) 4052, and references therein.

    Article  ADS  Google Scholar 

  204. Mackowiski D. W., Papadopolus D. H., Rosner D. E., “Comparison of Burnett and DSMC predictions of pressure distribution and normal stress in one-dimensional, strongly non-isothermal gases”, Phys. Fluids, 11 (1999) 2108 and references therein.

    Article  ADS  Google Scholar 

  205. Bobylev A. V., “The Chapman-Enskog and Grad methods for solving the Boltzmann equation”, Doklady, 27 (1982) 29.

    Google Scholar 

  206. Uribe F. J., Velasco R. M., Garcia-Colin L. S. and Diaz-Herrera, “Bobylev’s instability”, Phys. Rev. E, 62 (2000) 5835.

    Article  ADS  Google Scholar 

  207. Karlin I. V., “Exact summation of the Chapman-Enskog expansion from moment equation”, J. Phys. A: Math. Gen., 33 (2000) 8037.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  208. Jou D., Casas-Vazquez J., Madureira J. R., Vasconcellos A. R., Luzzi R., “Higher-order hydrodynamics: Extended Fick’s law and evolution equation and Bobylev’s instability”, J. Chem. Phys., 116 (2001) 1571.

    Article  ADS  Google Scholar 

  209. Jou D., Casas-Vazquez J., Madureira J. R., Vasconcellos A. R., Luzzi R., “Energy transport in a mesoscopic thermo-hydrodynamics”, J. Mod. Phys., 15 (2001) 4211.

    Article  ADS  Google Scholar 

  210. Dedeurwaerdere T., Casas-Vázquez J., Jou D., Lebon G., “Foundations and applications of a mesoscopic thermodynamic theory of fast phenomena”, Phys. Rev. E, 53 (1996) 498.

    Article  ADS  Google Scholar 

  211. Ramos J. G., Vasconcellos A. R., Luzzi R., Non-linear higher-order hydrodynamics: Generalized approach in a non-equilibrium ensemble formalism, IFGW-Unicamp Internal Report, and future publication (2005).

    Google Scholar 

  212. Montroll E. W., Schlesinger M. F., “Maximum Entropy Formalism, Fractals, Scaling Phenomena and 1/f Noise: A Tale of Tails”, J. Stat. Phys., 12 (1983) 209.

    Article  ADS  MathSciNet  Google Scholar 

  213. Kapur J. N., Kesavan H. K., Entropy Optimization Principles with Applications (Academic, Boston, USA) 1992.

    Book  Google Scholar 

  214. Jeffreys H. Scientific Inference (Cambridge Univ. Press, Cambridge, UK) 1973, third edition.

    MATH  Google Scholar 

  215. Kullback S., Leibler R. A., “On information and sufficiency”, J Ann. Math. Stat., 22 (1951) 79.

    Article  MathSciNet  MATH  Google Scholar 

  216. Ciszer I., “A class of measures of information of observation channels”, Periodic Math. Hungarica, 9 (1972) 191 (see also ref. [214]).

    Article  Google Scholar 

  217. Jizba P., Arimitzu T., “The world according to Renyi”, Ann. Phys. (N.Y.), 312 (2004) 17.

    Article  ADS  MATH  Google Scholar 

  218. Grassberger P., Procaccia I., “Estimation of the Kolmogorov entropy from a chaotic signal”, Phys. Rev. A, 28 (1983) 2591.

    Article  ADS  Google Scholar 

  219. Luzzi R., Vasconcellos A. R., Ramos J. G., Competing Styles in Statistical Mechanics: I. Systematization and Clarification in a General Theory, E-print http://arXiv.org/abs/cond-mat/0306217 (2003) and future publication.

    Google Scholar 

  220. Vasconcellos A. R., Ramos J. G., Luzzi R., Competing Styles in Statistical Mechanics: II. Comparison of theory and experiment and further illustrations, E-print http://arXiv.org/abs/cond-mat/0306247 (2003).

    Google Scholar 

  221. Luzzi R., Vasconcellos A. R., Ramos J. G., On the question of auxiliary approaches in nonequilibrium statistical mechanics of complex systems, IFGW-Unicamp Internal Report and Ann. Phys. (NY), submitted (2006).

    Google Scholar 

  222. Landsberg P. T., “Entropies Galore!” Braz. J. Phys., 29 (1999) 46.

    Article  ADS  Google Scholar 

  223. Landsberg P. T., Vedral V., “Distributions and channel capacities in generalized statistical mechanics”, Phys. Lett. A, 247 (1998) 322.

    Article  MathSciNet  MATH  Google Scholar 

  224. Skilling J., in Maximum Entropy and Bayesian Methods in Science and Engineering, edited by Erikson G. J., Smith C. R. (Kluwer Academic, Dordrecht, The Netherlands) 1988.

  225. Kaniadakis G., “Non-linear kinetics underlying generalized statistics”, Physica A, 296 (2001) 405.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  226. Kaniadakis G., “Statistical mechanics in the context of special relativity”, Phys. Rev. E, 66 (2002) 56125 (17).

    Article  ADS  MathSciNet  Google Scholar 

  227. Beck C., Cohen E. G. D., Superstatistics, E-print http://arXiv.org/abs/cond-mat/0205097 (2002).

    MATH  Google Scholar 

  228. Beck C. Superstatistics: Theory and Applications, E-print http://arXiv.org/abs/cond-mat/0303288 (2003).

    Book  MATH  Google Scholar 

  229. Vasconcellos A. R., Gorenstein A., Kleinke M. U., Ramos J. G., Luzzi R., “Statistical Approach to Fractal-Structured Physico-Chemical Systems: Analysis of Non- Fickian Diffusion”, J. Mod. Phys. B, 20 (2006) 4821.

    Article  ADS  MATH  Google Scholar 

  230. Vasconcellos A. R., Laureto E., Meneses E., Luzzi R., “Unconventional Statistical Mechanics Approach: Study of “anomalous” photoluminescence in semiconductor heterostructures”, J. Mod. Phys. B, 18 (2004) 1743.

    Article  ADS  Google Scholar 

  231. Ebeling W., Entropy, predictability and historicity of nonlinear processes, in Statistical Physics And Thermodynamics of Nonlinear Non-equilibrium Systems, edited by Ebeling W., Muschik W. (World Scientific, Singapore) 1993, pp. 217–28.

    Chapter  Google Scholar 

  232. Ebeling W., “On the relation between various entropy concepts and the caloric interpretation”, Physica A, 182 (1992) 108.

    Article  ADS  Google Scholar 

  233. Feistel R., Ebeling W., Evolution of Complex Systems (Kluwer Academic, Dordrecht, The Netherlands) 1989.

    MATH  Google Scholar 

  234. Cox R. T., The Algebra of Probable Inference (Johns Hopkins Press, Baltimore, USA) 1961.

    MATH  Google Scholar 

  235. Jaynes E. T., Probability Theory: The Logic of Science (Cambridge Univ. Press, Cambridge, UK) 2003.

    Book  MATH  Google Scholar 

  236. Cho A., “A fresh take on disorder or disorderly science?” Science, 297 (2002) 1268.

    Article  Google Scholar 

  237. Luzzi R., Vasconcellos A. R., Ramos J. G., “Trying to make sense of disorder”, Science, 298 (2002) 1171.

    Article  Google Scholar 

  238. Grassberger P., “Temporal scaling at Feigenbaum points and non-extensive thermodynamics”, Phys. Rev. Lett., 95 (2005) 140601.

    Article  ADS  Google Scholar 

  239. Havrda J., Charvat F., “Quantification methods of classification processes: Concept of structural a-entropy”, Kybernetica, 3 (1967) 036114.

    MathSciNet  MATH  Google Scholar 

  240. Nauenberg M., “A critique of q-entropy for thermal statistics”, Phys. Rev. E, 67 (2003) 036114.

    Article  ADS  Google Scholar 

  241. Lavenda B. H., “On the definition of fluctuating temperature”, Open Sys. & Information Dyn., 11 (2004) 139.

    Article  MathSciNet  MATH  Google Scholar 

  242. Balian R., Nauenberg M., “On ‘non-extensive statistical mechanics: new trends, new perspectives’”, Europhys. News, 37 (2006) 9.

    Google Scholar 

  243. Luzzi R. Vasconcellos A. R., Ramos J. G., “On fallacies concerning nonextensive thermodynamics and q-entropy”, Europhys. News, 37 (2006) 11.

    Article  Google Scholar 

  244. Brillouin L., Science and Information Theory (Academic, New York, USA) 1962.

    Book  MATH  Google Scholar 

  245. Jeffreys H., Probability Theory (Clarendon, Oxford, UK) 1961.

    MATH  Google Scholar 

  246. Anderson P. W., “The reverend Thomas Bayes, needles in a haystack, and the fifth force”, Phys. Today, 45 (1992) 9.

    ADS  Google Scholar 

  247. Jeffreys H., Scientific Inference (Cambridge Univ. Press, Cambridge, UK) 1973, third edition.

    MATH  Google Scholar 

  248. Jaynes E. T., Clearing up mysteries—The original goal, in Maximum Entropy and Bayesian Methods, edited by Skilling J. (Kluwer Academic, Dordrecht, The Netherlands) 1989, pp. 1–13.

    Google Scholar 

  249. Bricmont J., Science of Chaos or Chaos in Science? in The Flight from Science and Reason, edited by Gross P. R., Levitt N., Lewis M. W., Vol. 775 of NYAS Annals (New York Academy of Sciences, New York, USA) 1996, pp. 131–75.

    Google Scholar 

  250. Penrose O., The direction of Time, in Chance in Physics: Foundations and Perspectives, edited by Bricmont J. et al. (Springer, Berlin, Germany) 2001, pp. 61–82.

    Chapter  Google Scholar 

  251. Jaynes E. T., “On the rationale of Maximum Entropy methods”, Proc. IEEE, 70 (1982) 939.

    Article  ADS  Google Scholar 

  252. Brushvili L. L., Zviadadze M. D., “On the quasi-thermodynamic theory of magnetic relaxation”, Physica, 59 (1972) 679.

    Google Scholar 

  253. Vasconcellos A. R., Algarte A. C., Luzzi R., “On the question of Bogoliubov’s hierarchy of relaxation times: An example from semiconductor physics”, Physica A, 166 (1990) 517.

    Article  ADS  Google Scholar 

  254. Zubarev D. N., Morozov V. N. and Röpke G., Statistical Mechanics of Nonequilibrium Processes, Vols. I and II (Akademie Verlag-Wiley VCH, Berlin, Germany) 1996.

    MATH  Google Scholar 

  255. Akhiezer A. I., Peletminskii S. V., Methods of Statistical Physics (Pergamon, Oxford, UK) 1981.

    Google Scholar 

  256. Grandy W. T., “Principle of maximum entropy and irreversible processes”, Phys. Rep., 62 (1980) 175.

    Article  ADS  MathSciNet  Google Scholar 

  257. Forster D., Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Readings, USA) 1975.

    Google Scholar 

  258. Peletminskii S. V., Sokolovskii A. I., “Flux operators of physical variables and the method of quasi-averages”, Theor. Math. Phys., 18 (1974) 85.

    Article  Google Scholar 

  259. Andrade Neto A. V., Vasconcellos A. R., Luzzi R., Freire V. N., “A Raman scattering-based method to probe the carrier drift velocity in semiconductors: Application to GaN”, Appl. Phys. Lett., 85 (2004) 4055.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Group homepage: http://www.ifi.unicamp.br/~aurea

Chance is a cause, but it is inscrutable to the human mind.

Democritus (~460–~370 b.C.), cited by Aristoteles in Physics II, Chapt. 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzzi, R., Vasconcellos, Á.R. & Ramos, J.G. The theory of irreversible processes: Foundations of a non-equilibrium statistical ensemble formalism. Riv. Nuovo Cim. 29, 1–82 (2006). https://doi.org/10.1393/ncr/i2006-10009-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2006-10009-1

PACS 05.70.Ln

PACS 05.60.-k

PACS 05.20.Dd

PACS 02.50.-r

PACS 47.27.eb

Navigation