Skip to main content
Log in

Hawking radiation from acoustic black holes, short distance and backreaction effects

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

Using the action principle we first review how linear density per¬turbations (sound waves) in an Eulerian fluid obey a relativistic equation: the d’Alembert equation. This analogy between propagation of sound and that of a massless scalar field in a Lorentzian metric also applies to non-homogeneous flows. In these cases, sound waves effectively propagate in a curved four-dimensional “acous¬tic” metric whose properties are determined by the flow. Using this analogy, we consider regular flows which become supersonic, and show that the acoustic metric behaves like that of a black hole. The analogy is so good that, when considering quantum mechanics, acoustic black holes should produce a thermal flux of Hawking phonons. We then focus on two interesting questions related to Hawking radiation which are not fully understood in the context of gravitational black holes due to the lack of a theory of quantum gravity. The first concerns the calculation of the modifications of Hawking radiation which are induced by dispersive effects at short distances, i.e. approaching the atomic scale when considering sound. We general¬ize existing treatments and calculate the modifications caused by the propagation near the black-hole horizon. The second question concerns backreaction effects. We return to the Eulerian action, compute second-order effects, and show that the backreaction of sound waves on the fluid’s flow can be expressed in terms of their stress-energy tensor. Using this result in the context of Hawking radiation, we compute the secular effect on the background flow.

PACS 04.62. +v - Quantum field theory in curved spacetime.

PACS 04.70.Dy - Quantum aspects of black holes, evaporation, thermodynamics.

PACS 47.40.Ki - Supersonic and hypersonic flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W Hawking, Nature, 248 (1974) 30.

    Article  ADS  Google Scholar 

  2. S. W Hawking, Commun. Math. Phys., 43 (1975) 199.

    Article  ADS  Google Scholar 

  3. C. Ml Sner, K. Thorne and J Wheeler, Gravitation (Freeman, San Francisco) 1973.

    Google Scholar 

  4. B Carr, Astrophys. J., 201 (1975) 1.

    Article  ADS  Google Scholar 

  5. I. Musco et al, Class. Quantum, Grav., 22 (2005) 1405.

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Barrau et al, Astron. Astrophys., 388 (2002) 676.

    Article  ADS  Google Scholar 

  7. D. Page and S Hawking, Astrophys. J., 206 (1976) 1.

    Article  ADS  Google Scholar 

  8. H. Peiris et al, Astrophys. J. Suppl, 148 (2003) 213.

    Article  ADS  Google Scholar 

  9. N. Seto and A Cooray, Phys. Rev. D, 70 (2004) 063512

    Article  ADS  Google Scholar 

  10. W. G Unruh, Phys. Rev. Lett., 46 (1981) 1351.

    Article  ADS  Google Scholar 

  11. G. E Volovik, Phys. Rep., 351 (2000) 195.

    Article  ADS  MathSciNet  Google Scholar 

  12. J Bekenstein, Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Jacobson and R Parentani, Found. Phys., 33 (2003) 323.

    Article  MathSciNet  Google Scholar 

  14. C. Callan and J Maldacena, Nucl Phys., 472 (1996) 591.

    Article  ADS  Google Scholar 

  15. E. Keski-Vakkuri and P Kraus, Nucl Phys. B, 491 (1997) 249.

    Article  ADS  Google Scholar 

  16. S. Massar and R Parentani, Nucl. Phys. B, 575 (2000) 333.

    Article  ADS  Google Scholar 

  17. T Jacobson, Phys. Rev. D, 44 (1991) 1731.

    Article  ADS  MathSciNet  Google Scholar 

  18. W. G Unruh, Phys. Rev. D, 51 (1995) 2827.

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Brout, S. Massar, R. Parentani and P Spindel, Phys. Rev. D, 52 (1995) 4559.

    Article  ADS  Google Scholar 

  20. R. Balbinot, S. Fagnocchi, A. Fabbri and G. P Procopio, Phys. Rev. Lett., 94 (2005) 161302.

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Balbinot, S. Fagnocchi and A Fabbri, Phys. Rev. D, 71 (2005) 064019

    Article  ADS  Google Scholar 

  22. T Jacobson, Phys. Rev. D, 48 (1993) 728.

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Thooft, Nucl. Phys. B, 355 (1990) 138.

    Article  ADS  Google Scholar 

  24. R Parentani, Chapter 9 in [30], and Int. J. Theor. Phys., 41 (2002) 2175.

    Article  Google Scholar 

  25. G. ’T Hooft, Int. J. Mod. Phys. A, 11 (1996) 4623.

    Article  ADS  Google Scholar 

  26. R Parentani, Int. J. Mod. Phys. A, 17 (2002) 2721.

    Article  ADS  Google Scholar 

  27. T. Jacobson and R Parentani, An Echo of Black Holes, in Scientific American, Dec. (2005) 69–75.

    Google Scholar 

  28. M. Visser, C. BarcelÓ and S Liberati, Gen. Rel. Grav., 34 (2002) 1719.

    Article  Google Scholar 

  29. C. BarcelÓ, S. Liberati and M V. isser, gr-qc/0505065 (2005).

    Google Scholar 

  30. M. Novello, M. Visser and G. E. Volovik (EDITORS), Artificial Black Holes (World Scientific, River Edge, USA) 2002.

    Book  Google Scholar 

  31. L. D. Landau and E. M Lifshitz, Fluid Mechanics (Pergamon, London) 1959.

    Google Scholar 

  32. A. M. J Schakel, Mod. Phys. Lett. B, 10 (1996) 999.

    Article  ADS  Google Scholar 

  33. M Stone, Phys. Rev. B, 62 (2000) 1341.

    Article  ADS  Google Scholar 

  34. M Visser, Class. Quantum, Grav., 15 (1998) 1767.

    Article  ADS  Google Scholar 

  35. R. M Wald, General Relativity (University of Chicago Press, Chicago) 1984.

    Book  MATH  Google Scholar 

  36. N. D. Birrel and P. C. W Davies, Quantum Fields in Curved Spaces (Cambridge University Press) 1982.

    Book  Google Scholar 

  37. V Moncrief, Astrophys. J., 235 (1980) 1038.

    Article  ADS  Google Scholar 

  38. L. D. Landau and E. M Lifshitz, The Classical Theory of Fields (Pergamon) 1933.

    MATH  Google Scholar 

  39. R. Courant and K. O Friedrichs, Supersonic Flows and Shock Waves (Springer-Verlag) 1948.

    MATH  Google Scholar 

  40. C. BarcelÓ, S. Liberati, S. Sonego and M Visser, New J. Phys., 6 (2004) 186.

    Article  ADS  Google Scholar 

  41. C. BarcelÓ, S. Liberati and M Visser, Int. J. Mod. Phys. A, 18 (2003) 3735.

    Article  ADS  Google Scholar 

  42. R. Brout, S. Massar, R. Parentani and P Spindel, Phys. Rep., 260 (1995) 329.

    Article  ADS  MathSciNet  Google Scholar 

  43. M Visser, Int. J. Mod. Phys. D, 12 (2003) 649.

    Article  ADS  Google Scholar 

  44. C. BarrabÈs, V. P. Frolov and R Parentani, Phys. Rev. D, 62 (2000) 044020.

    Article  ADS  MathSciNet  Google Scholar 

  45. F. Dafolvo, S. Giorgini, L. P. Pitaevskii and S Stringari, Rev. Mod. Phys., 71 (1999) 463.

    Article  ADS  Google Scholar 

  46. T Jacobson, Prog. Theor. Phys. Suppl., 136 (1999) 1.

    Article  ADS  Google Scholar 

  47. S. Corley and T J. acobson, Phys. Rev. D, 54 (1996) 1568

    Article  ADS  Google Scholar 

  48. S Corley, Phys. Rev. D, 57 (1998) 6280.

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Massar and R Parentani, Nucl. Phys. B, 513 (1998) 375

    Article  ADS  Google Scholar 

  50. J. C. Niemeyer and R Parentani, Phys. Rev. D, 64 (2001) 10130.

    Article  Google Scholar 

  51. M. Abramowitz and I Stegun, Handbook of Mathematical Functions (Dover, New York) 1965.

    MATH  Google Scholar 

  52. C. BarcelÓ, M. Visser and S Liberati, Int. J. Mod. Phys. D, 10 (2001) 799.

    Article  ADS  Google Scholar 

  53. D. Arteaga, R. Parentani and E Verdaguer, Phys. Rev. D, 70 (2004) 044019.

    Article  ADS  MathSciNet  Google Scholar 

  54. D. Arteaga, R. Parentani and E Verdaguer, Int. J. Theor. Phys., 43 (2004) 731.

    Article  Google Scholar 

  55. P. R. Anderson, W. A. Hiscock and D. A Samuel, Phys. Rev. D, 51 (1995) 4337.

    Article  ADS  MathSciNet  Google Scholar 

  56. C. G. Callan, S. B. Giddings, J. A. Harvey and S Strominger, Phys. Rev. D, 45 (1992) 1005; A Strominger, Les Houches lectures on black holes, hep-th/9501071.

    Article  ADS  MathSciNet  Google Scholar 

  57. V. Mukhanov, A. Wipf, A Zelnikov, Phys. Lett. B, 332 (1994) 283.

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation (Imperial College Press, London) 2005.

    Book  MATH  Google Scholar 

  59. D. M. Capper and M. J Duff, NUOVO Cimento A, 23 (1974) 173; Led. Notes Phys., 631 (2003) 301.

    Article  ADS  Google Scholar 

  60. W. G Unruh, Phys. Rv. D, 14 (1976) 870.

    Article  ADS  Google Scholar 

  61. S. Bachmann and A Kempf, gr-qc/0504076.

  62. D. C. Roberts and Y Pomeau, cond-mat/0503757 (2005)

    Google Scholar 

  63. M. Novello, V. DE Lorenci, J. M. Solim and R Klippert, Phys. Rev. D, 61 (2000) 045001.

    Article  ADS  Google Scholar 

  64. U Leonhardt, Phys. Rev. A, 62 (2000) 012111.

    Article  ADS  Google Scholar 

  65. R. Schutzhold, M. Uhlmann, Y. Xu and U. R Fischer, Phys. Rev D, 72 (2005) 105005.

    Article  ADS  Google Scholar 

  66. S. W. Hawking and G. F. R Ellis, The Large Scale Structure of Spacetime (Cambridge University Press, Cambridge) 1973.

    Book  MATH  Google Scholar 

  67. D. Finkelstein, Phys. Rev. 11 (1958) 965.

    Article  ADS  Google Scholar 

  68. B. K. Harrison, K. S. Thorne, M. Wakano and J. A Wheeler, Gravitational Theory and Gravitational Collapse (University of Chicago Press, Chicago) 1965.

    Google Scholar 

  69. W Israel, Phys. Rev., 164 (1967) 1776.

    Article  ADS  Google Scholar 

  70. P. PainlevÉ, G. R. Acad. Sci (Paris), 173 (1921) 677

    ADS  Google Scholar 

  71. A Gullstrand, Arkiv. Mat. Astron. Fys., 16 (1922) 1.

    Google Scholar 

  72. K. Martell and E. Poisson, Am. J. Phys., 69 (2001) 476.

    Article  ADS  Google Scholar 

  73. H Reissner, Ann. Phys. (N.Y.), 50 (1916) 106

    Article  ADS  Google Scholar 

  74. G Nordstrom, Proc. Kon. Ned. Akad. Wet, 20 (1918) 1238.

    ADS  Google Scholar 

  75. E. Poisson and W Israel, Phys. Rev. D, 41 (1990) 1796.

    Article  ADS  MathSciNet  Google Scholar 

  76. R Penrose, NUOVO Cimento, 1 (1969) 252.

    Google Scholar 

  77. M. R. Brown and A. C Ottewill, Phys. Rev. D, 31 (1985) 2514

    Article  ADS  MathSciNet  Google Scholar 

  78. V. P. Frolov and A Zelnikov, Phys. Rev. D, 35 (1987) 3031.

    Article  ADS  MathSciNet  Google Scholar 

  79. J Bardeen, Phys. Rev. Lett. 46 382 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  80. J. W. York JR, in Quantum Theory of Gravity, edited by S. M. Christensen (Adam-Hilger, Bristol) 1984.

  81. R. Parentani and T. Piran, Phys. Rev. Lett, 73 (1994) 2805.

    Article  ADS  MathSciNet  Google Scholar 

  82. S Massar, Phys. Rev. D, 52 (1995) 5857.

    Article  ADS  Google Scholar 

  83. P Candelas, Phys. Rev. D, 21 (1980) 2185.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balbinot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbinot, R., Fabbri, A., Fagnocchi, S. et al. Hawking radiation from acoustic black holes, short distance and backreaction effects. Riv. Nuovo Cim. 28, 1–55 (2005). https://doi.org/10.1393/ncr/i2006-10001-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2006-10001-9

Navigation