Skip to main content
Log in

Molecular genetics of X-linked Charcot-Marie-Tooth disease

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common molecularly designated form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive distal muscle atrophy and weakness, areflexia, and variable sensory abnormalities. Affected males have moderate-to-severe symptoms, whereas heterozygous females are usually mildly affected or even asymptomatic. Several patients also have manifestations of central nervous system involvement or hearing impairment. Electrophysiological and pathological studies of peripheral nerves show evidence of demyelinating neuropathy with prominent axonal degeneration. A large number of mutations in the GJB1 gene encoding the gap junction (GJ) protein connexin32 (C×32) cause CMT1X. C×32 is expressed by Schwann cells and oligodendrocytes, as well as by other tissues, and the GJ formed by C×32 play an important role in the homeostasis of myelinated axons. The reported CMT1X mutations are diverse and affect both the promoter region as well as the coding region of GJB1. Many C×32 mutants fail to form functional GJ, or form GJ with abnormal biophysical properties. Furthermore, C×32 mutants are often retained intracellularly either in the endoplasmic reticulum or Golgi in which they could potentially have additional dominant-negative effects. Animal models of CMT1X demonstrate that loss of C×32 in myelinating Schwann cells causes a demyelinating neuropathy. No definite phenotype-genotype correlation has yet been established for CMT1X and effective molecular based therapeutics for this disease, remain to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel A., Bone L. J., Messing A., Scherer S. S., and Fischbeck K. F. (1999) Studies in transgenic mice indicate a loss of connexin32 function in X-linked Charcot-Marie-Tooth disease. J. Neuropathol. Exp. Neurol. 58, 702–710.

    PubMed  CAS  Google Scholar 

  • Abrams C. K., Bennett M. V. L., Verselis V. K., and Bargiello T. A. (2002) Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc. Natl. Acad. Sci. USA 99, 3980–3984.

    PubMed  CAS  Google Scholar 

  • Abrams C. K., Oh S., Ri Y., and Bargiello T. A. (2000) Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of Charcot-Marie-Tooth disease. Brain Res. Rev. 32, 1203–214.

    Google Scholar 

  • Abrams C. K., Freidin M. M., Verselis V. K., Bennett M. V., and Bargiello T. A. (2001) Functional alterations in gap junction channels formed by mutant forms of connexin 32:evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot-Marie-Tooth disease. Brain Res. 900, 9–25.

    PubMed  CAS  Google Scholar 

  • Allan W. (1939) Relation of hereditary pattern to clinical severity as illustrated by peroneal atrophy. Arch. Int. Med. 63, 1123–1131.

    Google Scholar 

  • Altevogt B. M., Kleopa K. A., Postma F. R., Scherer S. S., and Paul D. L. (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J. Neurosci. 22, 6458–6470.

    PubMed  CAS  Google Scholar 

  • Altevogt B. M. and Paul D. L. (2004) Four classes of intercellular channels between glial cells in the CNS. J. Neurosci. 24, 4313–4323.

    PubMed  CAS  Google Scholar 

  • Anzini P., Neuberg D. H.-H., Schachner M., et al. (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin32. J Neurosci. 17, 4545–4561.

    PubMed  CAS  Google Scholar 

  • Bähr M., Andres F., Timmerman V., Nelis E., Van Broeckhoven C., and Dichgans J. (1999) Central visual, acoustic, and motor pathway involvement in a Charcot-Marie-Tooth family with an Asn205Ser mutation in the connexin32 gene. J. Neurol. Neurosurg. Psychiatry 66, 202–206.

    PubMed  Google Scholar 

  • Balice-Gordon R. J., Bone L. J., and Scherer S. S. (1998) Functional gap junctions in the Schwann cell myelin sheath. J. Cell Biol. 142, 1095–1104.

    PubMed  CAS  Google Scholar 

  • Beckett J., Holden J. J. A., Simpson N. E., White B. N., and MacLeod P. M. (1986) Localization of X-linked dominant Charcot-Marie-Tooth disease (CMT2) to Xq13. J. Neurogenet. 3, 225–231.

    PubMed  CAS  Google Scholar 

  • Bergmann C., Schröder J. M., Rudnik-Schöneborn S., Zerres K., and Senderek J. (2001) A point mutation in the human connexin32 promoter P2 does not correlate with X-linked dominant Charcot-Marie-Tooth neuropathy in Germany. Mol. Brain Res. 88, 183–185.

    PubMed  CAS  Google Scholar 

  • Bergmann C., Zerres K., Rudnik-Schöneborn S., Eggermann T., Schröder J. M., and Senderek J. (2002) Allelic variants in the 5′ non-coding region of the connexin32 gene: possible pitfalls in the diagnosis of X linked Charcot-Marie-Tooth neuropathy (CMTX). J. Med. Genet. 39, e58.

    PubMed  CAS  Google Scholar 

  • Bergoffen J., Scherer S. S., Wang S., et al. (1993a) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 12039–2042.

    Google Scholar 

  • Bergoffen J., Trofatter J., Pericak-Vance M. A., Haines J., Chance P. F., and Fischbeck K. H. (1993b) Linkage localization of X-linked Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 52, 312–318.

    PubMed  CAS  Google Scholar 

  • Birouk N., Le Guern E., Maisonobe T., et al. (1998) X-linked Charcot-Marie-Tooth disease with connexin 32 mutations-clinical and electrophysiological study. Neurology 50, 1074–1082.

    PubMed  CAS  Google Scholar 

  • Boerkoel C. F., Takashima H., Garcia C. A., et al. (2002) Charcot-Marie-Tooth disease and related neuropathies: Mutation distribution and genotype-phenotype correlation. Ann. Neurol. 51, 190–201.

    PubMed  CAS  Google Scholar 

  • Bondurand N., Girard M., Pingault V., Lemort N., Dubourg O., and Goossens M. (2001) Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum. Mol. Genet. 10, 2783–2795.

    PubMed  CAS  Google Scholar 

  • Bruzzone R., White T. W., and Paul D. L. (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur. J. Biochem. 238, 1–27.

    PubMed  CAS  Google Scholar 

  • Bruzzone R., White T. W., Scherer S. S., Fischbeck K. H., and Paul D. L. (1994) Null mutations of connexin32 in patients with X-linked Charcot-Marie-Tooth disease. Neuron 13, 1253–1260.

    PubMed  CAS  Google Scholar 

  • Buniello A., Montanaro D., Volinia S., Gasparini P., and Marigo V. (2004) An expression atlas of connexin genes in the mouse. Genomics 83, 812–820.

    PubMed  CAS  Google Scholar 

  • Campeanu E. and Morariu M. (1970) Les relations entre genotype et phenotype dans la maladie de Charcot-Marie-Tooth. Rev. Roum. Neurol. 7, 47–56.

    PubMed  CAS  Google Scholar 

  • Castro C., Gomez-Hernandez J. M., Silander K., and Barrio L. C. (1999) Altered formation of hemichannels and gap junction channels caused by C-terminal connexin-32 mutations. J. Neurosci. 19, 3752–3760.

    PubMed  CAS  Google Scholar 

  • Chandross K. J., Kessler J. A., Cohen R. I., et al. (1996) Altered connexin expression after peripheral nerve injury. Mol. Cell. Neurosci, 7, 501–518.

    PubMed  CAS  Google Scholar 

  • Cowie F. and Barrett A. (2001) Uneventful administration of cisplatin to a man with X-linked Charcotmarie-Tooth disease (CMT). Ann. Oncol. 12, 422.

    PubMed  CAS  Google Scholar 

  • de Weerdt C. J. (1978) Charcot-Marie-Tooth disease with sex-linked inheritance, linkage studies and abnormal serum alkaline phosphatase levels. Eur. Neurol. 17, 336–344.

    PubMed  Google Scholar 

  • Deschênes S. M., Walcott J. L., Wexler T. L., Scherer S. S., and Fischbeck K. H. (1997) Altered trafficking of mutant connexin32. J. Neurosci. 17, 9077–9084.

    PubMed  Google Scholar 

  • Dubourg O., Tardieu S., Birouk N., et al. (2001) Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-linked Charcot-Marie-Tooth disease. Brain 124, 1958–1967.

    PubMed  CAS  Google Scholar 

  • Erwin W. G. (1944) A pedigree of sex-linked recessive peroneal atrophy. J. Hered. 35, 24–26.

    Google Scholar 

  • Fain P. R., Barker D. F., and Chance P. F. (1994) Refined genetic mapping of X-linked Charcot-Marie-Tooth neuropathy. Am. J. Hum. Genet. 54, 229–235.

    PubMed  CAS  Google Scholar 

  • Fischbeck K. H., ar-Rushdi N., Pericak-Vance M., Rozear M., Roses A. D., and Fryns J. P. (1986) X-linked neuropathy: gene localization with DNA probes. Ann. Neurol. 20, 527–532.

    PubMed  CAS  Google Scholar 

  • Flagiello L., Cirigliano V., Strazzullo M., et al. (1998) Mutation in the nerve-specific 5′ non-coding region of Cx32 gene and absence of specific mRNA in a CMTX1 Italian family. Hum. Mutat. 12, 361–363.

    PubMed  CAS  Google Scholar 

  • Fryns J. P. and Van den Berghe H. (1980) Sex-linked recessive inheritance in Charcot-Marie-Tooth disease with partial clinical manifestation in female carriers. Hum. Genet. 55, 413–415.

    PubMed  CAS  Google Scholar 

  • Gal A., Mucke J., Theile H., Wieacker P.F., Ropers H. H., and Wienker T. F. (1985) X-linked dominant Charcot-Marie-Tooth disease: suggestion of linkage with a cloned DNA sequence from the proximal Xq. Hum. Genet. 70, 38–42.

    PubMed  CAS  Google Scholar 

  • Goonewardena P., Welinhinda J., Anvret M., et al. (1988) A linkage study of the locus for X-linked Charcot-Marie-Tooth disease. Clin. Genet. 33, 435–440.

    PubMed  CAS  Google Scholar 

  • Gutierrez A., England J. D., Sumner A. J., et al. (2000) Unusual electrophysiological findings in X-linked dominant Charcot-Marie-Tooth disease. Muscle Nerve 23, 182–188.

    PubMed  CAS  Google Scholar 

  • Hahn A. F. (1993) Hereditary motor and sensory neuropathy: HMSN type II (neuronal type) and X-linked HMSN. Brain Pathol. 3, 147–155.

    PubMed  CAS  Google Scholar 

  • Hahn A. F., Ainsworth P. J., Bolton C. F., Bilbao J. M., and Vallat J. M. (2001) Pathological findings in the X-linked form of Charcot-Marie-Tooth disease: a morphometric and ultrastructural analysis. Acta Neuropathol. 101, 129–139.

    PubMed  CAS  Google Scholar 

  • Hahn A. F., Ainsworth P. J., Naus C. C. G., Mao J., and Bolton C. F. (2000) Clinical and pathological observations in men lacking the gap junction protein connexin 32. Muscle Nerve S39–S48.

  • Hahn A. F., Bolton C. F., White C. M., et al. (1999) Genotype/phenotype correlations in X-linked Charcot-Marie-Tooth disease. Ann. NY Acad. Sci. 883, 366–382.

    PubMed  CAS  Google Scholar 

  • Hahn A. F., Brown W. F., Koopman W. J., and Feasby T. E. (1990) X-linked dominant hereditary motor and sensory neuropathy. Brain 113, 1511–1525.

    PubMed  Google Scholar 

  • Haites N., Fairweather N., Clark C., Kelly K. F., Simpson S., and Johnston A. W. (1989) Linkage in a family with X-linked Charcot-Marie-Tooth disease. Clin. Genet. 35, 399–403.

    PubMed  CAS  Google Scholar 

  • Hanemann C. O., Bergmann C., Senderek J., Zerres K., and Sperfeld A. (2003) Transient, recurrent, white matter lesions in X-linked Charcot-Marie-Tooth disease with novel connexin 32 mutation. Arch. Neurol. 60, 605–609.

    PubMed  Google Scholar 

  • Harding A. E. and Thomas P. K. (1980a) The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 103, 259–280.

    PubMed  CAS  Google Scholar 

  • Harding A. E. and Thomas P. K. (1980b) Genetic aspects of hereditary motor and sensory neuropathy (types I and II). J. Med. Genet. 176, 329–336.

    Google Scholar 

  • Hattori N., Yamamoto M., Yoshihara T., et al. (2003) Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelinrelated proteins (PMP22, MPZ and C×32): a clinicopathological study of 205 Japanese patients. Brain 126, 134–151.

    PubMed  Google Scholar 

  • Heimler A., Friedman E., and Rosenthal A. D. (1978) Naevoid basal cell carcinoma and Charcot-Marie-Tooth disease. J. Med. Genet. 15, 288–291.

    PubMed  CAS  Google Scholar 

  • Herringham W. P. (1889) Muscular atrophy of the peroneal type affecting many members of a family. Brain 11, 230–236.

    Google Scholar 

  • Houlden H., Girard M., Cockerell C., et al. (2004) Connexin 32 promoter P2 mutations: a mechanism of peripheral nerve dysfunction. Ann. Neurol. 56, 730–734.

    PubMed  CAS  Google Scholar 

  • Huang Y., Sirkowski E. E., Stickney J. T., and Scherer S. S. (2005) Prenylation-defective human connexin32 mutants cause a partial loss of function in myelinating Schwann cells. J. Neurosci. 25, 7111–7120.

    PubMed  CAS  Google Scholar 

  • Hudder A. and Werner R. (2000) Analysis of a CMTX mutation reveals an essential IRES element in the connexin-32 gene. J. Biol. Chem. 275, 34,586–34,591.

    CAS  Google Scholar 

  • Ionasescu V., Ionasescu R., and Searby C. (1996a) Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy. Am. J. Med. Genet. 63, 486–491.

    PubMed  CAS  Google Scholar 

  • Ionasescu V. V., Burns T. L., Searby C., and Ionasescu R. (1988) X-linked dominant Charcot-Marie-Tooth neuropathy with 15 cases in a family: genetic linkage study. Muscle Nerve 11, 435–440.

    Google Scholar 

  • Ionasescu V. V., Searby C., Ionasescu R., Neuhaus I. M., and Werner R. (1996b) Mutations of non-coding region of the connexin32 gene in X-linked dominant Charcot-Marie-Tooth neuropathy. Neurology 47, 541–544.

    PubMed  CAS  Google Scholar 

  • Ionasescu V. V., Trofatter J., Haines J. L., Summers A. M., Ionasescu R., and Searby C. (1992) γ-linked recessive Charcot-Marie-Tooth neuropathy—clinical and genetic study. Muscle Nerve 15, 368–373.

    PubMed  CAS  Google Scholar 

  • Iselius L. and Grimby L. (1982) A family with Charcot-Marie-Tooth disease showing a probable X-linked incompletely dominant inheritance. Heriditas 97, 157, 158.

    CAS  Google Scholar 

  • Kawakami H., Inoue K., Sakakihara I., and Nakamura S. (2002) Novel mutation in X-linked Charcot-Marie-Tooth disease associated with CNS impairment. Neurology 59, 923–926.

    PubMed  CAS  Google Scholar 

  • Kleopa K. A., Orthmann J. L., Enriquez A., Paul D. L., and Scherer S. S. (2004) Unique distribution of gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47, 346–357.

    PubMed  Google Scholar 

  • Kleopa K. A., and Scherer S. S. (2002) Inherited Neuropathies. Neurol. Clin. North Am. 20, 679–709.

    Google Scholar 

  • Kleopa K. A., Yum S. W., and Scherer S. S. (2002) Cellular mechanisms of connexin 32 mutations associated with CNS manifestations. Neurosci. Res. 68, 522–534.

    CAS  Google Scholar 

  • Kobsar I., Berghoff M., Samsam M., et al. (2003) Preserved myelin integrity and reduced axonopathy in connexin32-deficient mice lacking the recombination activating gene-1. Brain 126, 804–813.

    PubMed  CAS  Google Scholar 

  • Kobsar I., Maurer M., Ott T., and Martini R. (2002) Macrophage-related demyelination in peripheral nerves of mice deficient in the gap junction protein connexin 32. Neurosci. Lett. 320, 17–20.

    PubMed  CAS  Google Scholar 

  • Kuhlbrodt K., Herbarth B., Sock E. Hermans-Borgmeyer I., and Wegner M. (1998) Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 18, 237–250.

    PubMed  CAS  Google Scholar 

  • Kuntzer T., Dunand M., Schorderet D. F., Vallat J. M., Hahn A. F., and Bogousslavsky J. (2003) Pheno-typic expression of a Pro 87 to Leu mutation in the connexin 32 gene in a large Swiss family with Charcot-Marie-Tooth neuropathy. J. Neurol. Sci. 207, 77–86.

    PubMed  CAS  Google Scholar 

  • Le Guern E., Ravise N., Gugenheim M., et al. (1994) Linkage analyses between dominant X-linked Charcot-Marie-Tooth disease, and 15 Xq11-Xq21 microsatellites in a new large family: three new markers are closely linked to the gene. Neuromusc. Disord. 4, 463–469.

    PubMed  Google Scholar 

  • Liang G. S. L., de Miguel M., Gomez-Hernandez J. M., et al. (2005) Severe neuropathy with leaky connexin32 hemichannels. Ann. Neurol. 57, 749–754.

    PubMed  CAS  Google Scholar 

  • Lin G. S., Glass J. D., Shumas S., Scherer S. S., and Fischbeck K. H. (1999) A unique mutation in connexin32 associated with severe, early onset CMTX in a heterozygous female. Ann. NY Acad. Sci. 883, 481–485.

    PubMed  CAS  Google Scholar 

  • Menichella D. M., Goodenough D. A., Sirkowski E., Scherer S. S., and Paul D. L. (2003) Connexins are critical for normal myelination in the CNS. J. Neurosci. 23, 5963–5973.

    PubMed  CAS  Google Scholar 

  • Mersiyanova I. V., Ismailov S. M., Polyakov A. V., et al. (2000) Screening for mutations in the peripheral myelin genes PMP22, MPZ and Cx32 (GJB1) in Russian Charcot-Marie-Tooth neuropathy patients. Hum. Mutat. 15, 340–347.

    PubMed  CAS  Google Scholar 

  • Mostacciuolo M. L., Muller E., Fardin P., et al. (1991) X-linked Charcot-Marie-Tooth disease: a linkage sudy in a large family by using 12 probes for the pericentromeric region. Hum. Genet. 87, 23–27.

    PubMed  CAS  Google Scholar 

  • Mostacciuolo M. L., Righetti E., Zortea M., et al. (2001) Charcot-Marie-Tooth disease type I and related demyelinating neuropathies: Mutation analysis in a large cohort of Italian families. Hum. Mutat. 18, 32–41.

    PubMed  CAS  Google Scholar 

  • Nagy J. I., Ionescu A. V., Lynn B. D., and Rash J. E. (2003a) Connexin29 and connexin32 at oligoden-drocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J. Comp. Neurol. 22, 356–370.

    Google Scholar 

  • Nagy J. J., Ionescu A. V., Lynn B. D., and Rash J. E. (2003b) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: Implications from normal and connexin32 knockout mice. Glia 44, 205–218.

    PubMed  CAS  Google Scholar 

  • Nagy J. I. and Rash J. E. (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res. Rev. 32, 29–44.

    PubMed  CAS  Google Scholar 

  • Nakagawa M., Takashima H., Umehara F., et al. (2001) Clinical phenotype in X-linked Charcot-Marie-Tooth disease with an entire deletion of the connexin32 coding sequence. J. Neurol. Sci. 185, 31–36.

    PubMed  CAS  Google Scholar 

  • Neuhaus I. M., Bone L., Wang S., Ionasescu V., and Werner R. (1996) The human connexin32 gene is transcribed from two tissue-specific promoters. Biosci. Reports 16, 239–248.

    CAS  Google Scholar 

  • Neuhaus I. M., Dahl G., and Werner R. (1995) Use of alternative promoters for tissue-specific expression of the gene coding for connexin32. Gene 158, 257–262.

    PubMed  CAS  Google Scholar 

  • Nicholson G. and Corbett A. (1996) Slowing of central conduction in X-linked Charcot-Marie-Tooth neuropathy shown by brain auditory evoked responses. J. Neurol. Neurosurg. Psychiatry 61, 43–46.

    PubMed  CAS  Google Scholar 

  • Nicholson G. and Nash J. (1993) Intermediate nerve conduction velocities define X-linked Charcot-Marie-Tooth neuropathy families. Neurology 43, 2558–2564.

    PubMed  CAS  Google Scholar 

  • Nicholson G. A., Yeung L., and Corbett A. (1998) Efficient neurophysiological selection of X-linked Charcot-Marie-Tooth families. Neurology 51, 1412–1416.

    PubMed  CAS  Google Scholar 

  • Niewiadomski L. A. and Kelly T. E. (1996) X-linked Charcot-Marie-Tooth disease: molecular analysis of interfamilial variability. Am. J. Med. Genet. 66, 175–178.

    PubMed  CAS  Google Scholar 

  • Numakura C., Lin C., Ikegami T., Guldberg P., and Hayasaka K. (2002) Molecular analysis in Japanese patients with Charcot-Marie-Tooth disease: DGGE analysis for PMP22, MPZ, and Cx32/GJB1 mutations. Hum. Mutat. 20, 392–398.

    PubMed  CAS  Google Scholar 

  • Odermatt B., Wellershaus K., Wallraff A., et al. (2003) Connexin47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J. Neurosci. 23, 4549–4559.

    PubMed  CAS  Google Scholar 

  • Oh S., Ri Y., Bennett M. V. L., Trexler E. B., Verselis V. K., and Bargiello T. A. (1997) Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron 19, 927–938.

    PubMed  CAS  Google Scholar 

  • Paulson H. L., Garbern J. Y., Hoban T. F., et al. (2002) Transient central nervous system white matter abnormality in X-linked Charcot-Marie-Tooth disease. Ann. Neurol. 52, 429–434.

    PubMed  CAS  Google Scholar 

  • Phillips L. H., Kelly T. E., Schnatterly P., and Parker D. (1985) Hereditary motor-sensory neuropathy (HMSN): possible X-linked dominant inheritance. Neurology 35, 498–502.

    PubMed  CAS  Google Scholar 

  • Rabadan-Diehl C., Dahl G., and Werner R. (1994) A connexin-32 mutation associated with Charcot-Marie-Tooth disease does not affect channel formation in oocytes. FEBS Lett. 351, 90–94.

    PubMed  CAS  Google Scholar 

  • Ressot C. and Bruzzone R. (2000) Connexin channels in Schwann cells and the development of the X-linked form of Charcot-Marie-Tooth disease. Brain Res. Rev. 32, 192–202.

    PubMed  CAS  Google Scholar 

  • Rouger H., Le Guern E., Birouk N., et al. (1997) Charcot-Marie-Tooth disease with intermediate motor nerve conduction velocities: Characterization of 14 Cx32 mutations in 35 families. Hum. Mutat. 10, 443–450.

    PubMed  CAS  Google Scholar 

  • Rozear M. P., Pericak-Vance M. A., Fischbeck K., et al. (1987) Hereditary motor and sensory neuropathy, X-linked: a half century follow-up. Neurology 37, 1460–1465.

    PubMed  CAS  Google Scholar 

  • Sander S., Nicholson G. A., Ouvrier R. A., McLeod J. G., and Pollard J. D. (1998) Charcot-Marie-Tooth disease: histopathological features of the peripheral myelin protein (PMP22) duplication (CMT1A) and connexin32 mutations (CMTX1). Muscle Nerve 21, 217–225.

    PubMed  CAS  Google Scholar 

  • Sandri C., Van Buren J. M., and Akert K. (1982) Membrane morphology of the vertebrate nervous system. Prog. Brain Res. 46, 201–265.

    Google Scholar 

  • Schelhaas H. J., Van Engelen B. G., Gabreels-Festen A. A., et al. (2002) Transient cerebral white matter lesions in a patient with connexin 32 missense mutation. Neurology. 59, 2007–2008.

    PubMed  CAS  Google Scholar 

  • Scherer S. S. and Kleopa K. A. (2005) X-linked Charcot-Marie-Tooth disease. In: Dyck P. J. and Thomas P. K. (eds), Peripheral Neuropathy, Philadelphia: Elsevier Saunders, pp. 1791–1804.

    Google Scholar 

  • Scherer S. S. and Paul D. L. (2004) The connexin32 and connexin29 genes. In: Lazzarini R. A. (ed), Myelin Biology and Disorders, San Diego: Elsevier, pp. 599–608.

    Google Scholar 

  • Scherer S. S., Bone L. J., Abel A., Deschênes S. M., Balice-Gordon R. J., and Fischbeck K. H. (1999) The role of the gap junction protein connexin32 in the patho-genesis of X-linked Charcot-Marie-Tooth disease. In: Cardew G. (ed), Gap junction-mediated inter-cellular signalling in health and disease. Novartis Foundation Symposium 219. New York: John Wiley & Sons, pp. 175–185.

    Google Scholar 

  • Scherer S. S., Deschênes S. M., Xu Y.-T., Grinspan J. B., Fischbeck K. H., and Paul D. L. (1995) Connexin32 is a myelin-related protein in the PNS and CNS. J. Neurosci. 15, 8281–8294.

    PubMed  CAS  Google Scholar 

  • Scherer S. S., Xu Y. T., Messing A., Willecke K., Fischbeck K. H., and Jeng L. J. (2005) Transgenic expression of human connexin32 in myelinating Schwann cells prevents demyelination in connexin32-null mice. J. Neurosci. 25, 1550–1559.

    PubMed  CAS  Google Scholar 

  • Scherer S. S., Xu Y.-T., Nelles E., Fischbeck K., Willecke K., and Bone L. J. (1998) Connexin32-null mice develop a demyelinating peripheral neuropathy. Glia 24, 8–20.

    PubMed  CAS  Google Scholar 

  • Schnapp B. J. and Mugnaini E. (1978) Membrane architecture of myelinated fibers as seen by freeze-fracture. In: Waxman S. G. (ed), Physiology and pathobiology of axons, New York: Raven Press, pp. 83–123.

    Google Scholar 

  • Senderek J., Bergmann C., Quasthoff S., Ramaekers V. T., and Schröder J. M. (1998) X-linked dominant Charcot-Marie-Tooth disease: nerve biopsies allow morphological evaluation and detection of connexin32 mutations (Arg15Trp, Arg22Gln). Acta Neuropathol. 95, 443–449.

    PubMed  CAS  Google Scholar 

  • Senderek J., Hermanns B., Bergmann C., et al. (1999) X-linked dominant Charcot-Marie-Tooth neuropathy: clinical, electrophysiological, and morphological phenotype in four families with different connexin32 mutations. J. Neurol. Sci. 167, 90–101.

    PubMed  CAS  Google Scholar 

  • Silander K., Meretoja P., Juvonen V., et al. (1998) Spectrum of mutations in Finnish patients with Charcot-Marie-Tooth disease and related neuropathies. Hum. Mutat. 12, 59–68.

    PubMed  CAS  Google Scholar 

  • Söhl G., Gillen C., Bosse F., Gleichmann M., Muller H. W., and Willecke K. (1996) A second alternative transcript of the gap junction gene connexin32 is expressed in murine Schwann cells and modulated in injured sciatic nerve. Eur. J. Cell Biol. 69, 267–275.

    PubMed  Google Scholar 

  • Söhl G., Theis M., Hallas G., et al. (2001) A new alter-natively spliced transcript of the mouse connexin32 gene is expressed in embryonic stem cells, oocytes, and liver. Exp. Cell Res. 266, 177–186.

    PubMed  Google Scholar 

  • Swift M. R. and Horowitz S. L. (1969) Familial jaw cysts in Charcot-Marie-Tooth disease. J. Med. Genet. 6, 193–195.

    PubMed  CAS  Google Scholar 

  • Tabaraud F., Lagrange E., Sindou P., Vandenberghe A., Levy N., and Vallat J. M. (1999) Demyelinating X-linked Charcot-Marie-Tooth disease: unusual electrophysiological findings. Muscle. Nerve 22, 1442–1447

    PubMed  CAS  Google Scholar 

  • Taylor R. A., Simon E. M., Marks H. G., and Scherer S. S. (2003) The CNS phenotype of X-linked Charcot-Marie-Tooth disease: more thana peripheral problem. Neurology 61, 1475–1478.

    PubMed  Google Scholar 

  • Tetzlaff W. (1982) Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J. Neurocytol. 11, 839–858.

    PubMed  CAS  Google Scholar 

  • Timmerman V., de Jonghe P., Spoelders P., et al. (1996) Linkage and mutation analysis of Charcot-Marie-Tooth neuropathy type 2 families with chromosomes 1p35-p36 and Xq13. Neurology 46, 1311–1318.

    PubMed  CAS  Google Scholar 

  • Uhlenberg B., Schuelke M., Ruschendorf F., et al. (2004) Mutations in the gene encoding gap junction protein alpha 12 (Connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am. J. Hum. Genet. 75, 251–260.

    PubMed  CAS  Google Scholar 

  • Unger V. M., Kumar N. M., Gilula N. B., and Yeager M. (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283, 1176–1180.

    PubMed  CAS  Google Scholar 

  • Vital A., Ferrer X., Lagueny A., et al. (2001) Histopathological features of X-linked Charcot-Marie-Tooth disease in 8 patients from 6 families with different connexin32 mutations. J. Peripher. Nerv. Syst. 6, 79–84.

    PubMed  CAS  Google Scholar 

  • Vondracek P., Seeman P., Hermanova M., and Fajkusova L. (2005) X-linked Charcot-Marie-Tooth disease: phenotypic expression of a novel mutation Ile127Ser in the GJB1 (connexin 32) gene. Muscle Nerve 31, 252–255.

    PubMed  CAS  Google Scholar 

  • Wang H. L., Wu T., Chang W. T., et al. (2000) Point mutation associated with X-linked dominant Charcot-Marie-Tooth disease impairs the P2 promoter activity of human connexin-32 gene. Mol. Brain Res. 78, 146–153.

    PubMed  CAS  Google Scholar 

  • Warner L. E., Mancias P., Butler I. J., et al. (1998) Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat. Genet. 18, 382–384.

    PubMed  CAS  Google Scholar 

  • White T. W. and Paul D. L. (1999) Genetic diseases and gene knock outs reveal diverse connex in functions. Annu. Rev. Physiol. 61, 283–310.

    PubMed  CAS  Google Scholar 

  • Willecke K., Eiberger J., Degen J., et al. (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383, 725–737.

    PubMed  CAS  Google Scholar 

  • Woratz G. (1964) Neurale Muskelatrophie mit Dominantem X-Chromosomalem Erbgang. Berlin: Akademie-Verlag.

    Google Scholar 

  • Yum S. W., Kleopa K. A., Shumas S., and Scherer S. S. (2002) Diverse trafficking abnormalities of Connexin32 mutants causing CMTX. Neurobiol. Dis. 11, 43–52.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleopas A. Kleopa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleopa, K.A., Scherer, S.S. Molecular genetics of X-linked Charcot-Marie-Tooth disease. Neuromol Med 8, 107–122 (2006). https://doi.org/10.1385/NMM:8:1-2:107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:8:1-2:107

Index Entries

Navigation