Skip to main content

Advertisement

Log in

GJB1-associated X-linked Charcot–Marie–Tooth disease, a disorder affecting the central and peripheral nervous systems

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Charcot–Marie–Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel A, Bone LJ, Messing A, Scherer SS, Fischbeck KH (1999) Studies in transgenic mice indicate a loss of connexin32 function in X-linked Charcot-Marie-Tooth disease. J Neuropathol Exp Neurol 58:702–710

    CAS  PubMed  Google Scholar 

  • Abrams CK, Scherer SS (2012) Gap junctions in inherited human disorders of the central nervous system. Biochim Biophys Acta 1818:2030–2047

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abrams CK, Oh S, Ri Y, Bargiello TA (2000) Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of Charcot-Marie-Tooth disease. Brain Res Brain Res Rev 32:203–214

    CAS  PubMed  Google Scholar 

  • Abrams CK, Bennett MV, Verselis VK, Bargiello TA (2002) Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc Natl Acad Sci U S A 99:3980–3984

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abrams CK, Freidin M, Bukauskas F, Dobrenis K, Bargiello TA, Verselis VK, Bennett MV, Chen L, Sahenk Z (2003) Pathogenesis of X-linked Charcot-Marie-Tooth disease: differential effects of two mutations in connexin 32. J Neurosci 23:10548–10558

    CAS  PubMed  Google Scholar 

  • Abrams CK, Islam M, Mahmoud R, Kwon T, Bargiello TA, Freidin MM (2013) Functional requirement for a highly conserved charged residue at position 75 in the gap junction protein connexin 32. J Biol Chem 288:3609–3619

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abrams CK, Scherer SS, Flores-Obando R, Freidin MM, Wong S, Lamantea E, Farina L, Scaioli V, Pareyson D, Salsano E (2014) A new mutation in GJC2 associated with subclinical leukodystrophy. J Neurol J Neurol. Jul 25. [Epub ahead of print]

  • Ahn M, Lee J, Gustafsson A, Enriquez A, Lancaster E, Sul JY, Haydon PG, Paul DL, Huang Y, Abrams CK, Scherer SS (2008) Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. J Neurosci 86:992–1006

    CAS  Google Scholar 

  • Ainsworth PJ, Bolton CF, Murphy BC, Stuart JA, Hahn AF (1998) Genotype/phenotype correlation in affected individuals of a family with a deletion of the entire coding sequence of the connexin 32 gene. Hum Genet 103:242–244

    CAS  PubMed  Google Scholar 

  • Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323

    CAS  PubMed  Google Scholar 

  • Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22:6458–6470

    CAS  PubMed  Google Scholar 

  • Anand G, Maheshwari N, Roberts D, Padeniya A, Hamilton-Ayers M, van der Knaap M, Fratter C, Jayawant S (2010) X-linked hereditary motor sensory neuropathy (type 1) presenting with a stroke-like episode. Dev Med Child Neurol 52:677–679

    PubMed  Google Scholar 

  • Anzini P, Neuberg DH, Schachner M, Nelles E, Willecke K, Zielasek J, Toyka KV, Suter U, Martini R (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17:4545–4551

    CAS  PubMed  Google Scholar 

  • Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M, Wicher GK, Mitter R, Greensmith L, Behrens A, Raivich G, Mirsky R, Jessen KR (2012) c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bahr M, Andres F, Timmerman V, Nelis ME, Van Broeckhoven C, Dichgans J (1999) Central visual, acoustic, and motor pathway involvement in a Charcot-Marie-Tooth family with an Asn205Ser mutation in the connexin32 geen. J Neurol Neurosurg Psychiatry 66:202–206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balice-Gordon RJ, Bone LJ, Scherer SS (1998) Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 142:1095–1104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barrio LC, Suchyna T, Bargiello T, Xu LX, Roginski RS, Bennett MV, Nicholson BJ (1991) Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci U S A 88:8410–8414 [published erratum appears in Proc Natl Acad Sci U S A 1992 May 1;89(9):4220]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Basri R, Yabe I, Soma H, Matsushima M, Tsuji S, Sasaki H (2007) X-linked Charcot-Marie-Tooth disease (CMTX) in a severely affected female patient with scattered lesions in cerebral white matter. Int Med (Tokyo, Japan) 46:1023–1027

    Google Scholar 

  • Basu A, Horvath R, Esisi B, Birchall D, Chinnery PF (2011) Recurrent stroke-like episodes in X-linked Charcot-Marie-Tooth disease. Neurology 77:1205–1206

    CAS  PubMed  Google Scholar 

  • Beauvais K, Furby A, Latour P (2006) Clinical, electrophysiological and molecular genetic studies in a family with X-linked dominant Charcot-Marie-Tooth neuropathy presenting a novel mutation in GJB1 Promoter and a rare polymorphism in LITAF/SIMPLE. Neuromuscul Disord 16:14–18

    PubMed  Google Scholar 

  • Berciano J, Combarros O, Calleja J, Polo JM, Leno C (1989) The application of nerve conduction and clinical studies to genetic counseling in hereditary motor and sensory neuropathy type I. Muscle Nerve 12:302–306

    CAS  PubMed  Google Scholar 

  • Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262:2039–2042

    CAS  PubMed  Google Scholar 

  • Bicego M, Morassutto S, Hernandez VH, Morgutti M, Mammano F, D’Andrea P, Bruzzone R (2006) Selective defects in channel permeability associated with Cx32 mutations causing X-linked Charcot-Marie-Tooth disease. Neurobiol Dis 21:607–617

    CAS  PubMed  Google Scholar 

  • Birouk N, LeGuern E, Maisonobe T, Rouger H, Gouider R, Tardieu S, Gugenheim M, Routon MC, Leger JM, Agid Y, Brice A, Bouche P (1998) X-linked Charcot-Marie-Tooth disease with connexin 32 mutations: clinical and electrophysiologic study. Neurology 50:1074–1082

    CAS  PubMed  Google Scholar 

  • Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212

    CAS  PubMed  Google Scholar 

  • Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Lisa FD, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R, Mercola M (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M (2001) Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet 10:2783–2795

    CAS  PubMed  Google Scholar 

  • Bonnaud-Toulze EN, Raine CS (1980) Remodelling during remyelination in the peripheral nervous system. Neuropathol Appl Neurobiol 6:279–290

    CAS  PubMed  Google Scholar 

  • Bort S, Nelis E, Timmerman V, Sevilla T, Cruz-Martinez A, Martinez F, Millan JM, Arpa J, Vilchez JJ, Prieto F, Van Broeckhoven C, Palau F (1997) Mutational analysis of the MPZ, PMP22 and Cx32 genes in patients of Spanish ancestry with Charcot-Marie-Tooth disease and hereditary neuropathy with liability to pressure palsies. Hum Genet 99:746–754

    CAS  PubMed  Google Scholar 

  • Bouche P, Gherardi R, Cathala HP, Lhermitte F, Castaigne P (1983) Peroneal muscular atrophy. Part 1. Clinical and electrophysiological study. J Neurol Sci 61:389–399

    CAS  PubMed  Google Scholar 

  • Bruzzone R, White TW, Paul DL (1994a) Expression of chimeric connexins reveals new properties of the formation and gating behavior of gap junction channels. J Cell Sci 107:955–967

    CAS  PubMed  Google Scholar 

  • Bruzzone R, White TW, Scherer SS, Fischbeck KH, Paul DL (1994b) Null mutations of connexin32 in patients with X-linked Charcot-Marie-Tooth disease. Neuron 13:1253–1260

    CAS  PubMed  Google Scholar 

  • Bukauskas FF, Elfgang C, Willecke K, Weingart R (1995) Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflugers Arch 429:870–872

    CAS  PubMed  Google Scholar 

  • Camara-Lemarroy CR, Guzman-de la Garza FJ, Fernandez-Garza NE (2010) Molecular inflammatory mediators in peripheral nerve degeneration and regeneration. Neuroimmunomodulation 17:314–324

    CAS  PubMed  Google Scholar 

  • Cao F, Eckert R, Elfgang C, Nitsche JM, Snyder SA, Hu DF, Willecke K, Nicholson BJ (1998) A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci 111:31–43

    CAS  PubMed  Google Scholar 

  • Caramins M, Colebatch JG, Bainbridge MN, Scherer SS, Abrams CK, Hackett EL, Freidin MM, Jhangiani SN, Wang M, Wu Y, Muzny DM, Lindeman R, Gibbs RA (2013) Exome sequencing identification of a GJB1 missense mutation in a kindred with X-linked spinocerebellar ataxia (SCA-X1). Hum Mol Genet 22:4329–4338

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll SL, Miller ML, Frohnert PW, Kim SS, Corbett JA (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17:1642–1659

    CAS  PubMed  Google Scholar 

  • Chandross KJ, Chanson M, Spray DC, Kessler JA (1995) Transforming growth factor-beta 1 and forskolin modulate gap junctional communication and cellular phenotype of cultured Schwann cells. J Neurosci 15:262–273

    CAS  PubMed  Google Scholar 

  • Chandross KJ, Kessler JA, Cohen RI, Simburger E, Spray DC, Bieri P, Dermietzel R (1996a) Altered connexin expression after peripheral nerve injury. Mol Cell Neurosci 7:501–518

    CAS  PubMed  Google Scholar 

  • Chandross KJ, Spray DC, Cohen RI, Kumar NM, Kremer M, Dermietzel R, Kessler JA (1996b) TNF alpha inhibits Schwann cell proliferation, connexin46 expression, and gap junctional communication. Mol Cell Neurosci 7:479–500

    CAS  PubMed  Google Scholar 

  • Chanson M, Fanjul M, Bosco D, Nelles E, Suter S, Willecke K, Meda P (1998) Enhanced secretion of amylase from exocrine pancreas of connexin32- deficient mice. J Cell Biol 141:1267–1275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clemence A, Mirsky R, Jessen KR (1989) Non-myelin-forming Schwann cells proliferate rapidly during Wallerian degeneration in the rat sciatic nerve. J Neurocytol 18:185–192

    CAS  PubMed  Google Scholar 

  • Combarros O, Calleja J, Polo JM, Berciano J (1987) Prevalence of hereditary motor and sensory neuropathy in Cantabria. Acta Neurol Scand 75:9–12

    CAS  PubMed  Google Scholar 

  • Cox DR, DiSalvo M, Hall BD (1978) Neurologic abnormalities in oculodentodigital dysplasia: a new finding. Clin Res 26:193A

    Google Scholar 

  • Dahl E, Manthey D, Chen Y, Schwarz HJ, Chang YS, Lalley PA, Nicholson BJ, Willecke K (1996) Molecular cloning and functional expression of mouse connexin-30, a gap junction gene highly expressed in adult brain and skin. J Biol Chem 271:17903–17910

    CAS  PubMed  Google Scholar 

  • Davis CJ, Bradley WG, Madrid R (1978) The peroneal muscular atrophy syndrome: clinical, genetic, electrophysiological and nerve biopsy studies. I. Clinical, genetic and electrophysiological findings and classification. J Genet Hum 26:311–349

    CAS  PubMed  Google Scholar 

  • Dere E, De Souza-Silva MA, Frisch C, Teubner B, Sohl G, Willecke K, Huston JP (2003) Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes. Eur J Neurosci 18:629–638

    CAS  PubMed  Google Scholar 

  • Deschenes SM, Walcott JL, Wexler TL, Scherer SS, Fischbeck KH (1997) Altered trafficking of mutant connexin32. J Neurosci 17:9077–9084

    CAS  PubMed  Google Scholar 

  • Dezawa M, Nagano T (1993) Contacts between regenerating axons and the Schwann cells of sciatic nerve segments grafted to the optic nerve of adult rats. J Neurocytol 22:1103–1112

    CAS  PubMed  Google Scholar 

  • Dijkhuizen RM, Knollema S, van der Worp HB, Ter Horst GJ, De Wildt DJ, Berkelbach van der Sprenkel JW, Tulleken KA, Nicolay K (1998) Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke 29:695–704

    CAS  PubMed  Google Scholar 

  • Dubourg O, Tardieu S, Birouk N, Gouider R, Leger JM, Maisonobe T, Brice A, Bouche P, LeGuern E (2001) Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-linked Charcot-Marie-Tooth disease. Brain 124:1958–1967

    CAS  PubMed  Google Scholar 

  • Eiberger J, Kibschull M, Strenzke N, Schober A, Bussow H, Wessig C, Djahed S, Reucher H, Koch DA, Lautermann J, Moser T, Winterhager E, Willecke K (2006) Expression pattern and functional characterization of connexin29 in transgenic mice. Glia 53:601–611

    PubMed  Google Scholar 

  • Filippov MA, Hormuzdi SG, Fuchs EC, Monyer H (2003) A reporter allele for investigating connexin 26 gene expression in the mouse brain. Eur J Neurosci 18:3183–3192

    PubMed  Google Scholar 

  • Flagiello L, Cirigliano V, Strazzullo M, Cappa V, Ciccodicola A, D’Esposito M, Torrente I, Werner R, Di Iorio G, Rinaldi M, Dallapiccola A, Forabosco A, Ventruto V, D’Urso M (1998) Mutation in the nerve-specific 5′non-coding region of Cx32 gene and absence of specific mRNA in a CMTX1 Italian family. Mutations in brief no. 195. Online. Hum Mutat 12:361

    CAS  PubMed  Google Scholar 

  • Fowler SL, Akins M, Zhou H, Figeys D, Bennett SA (2013) The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. J Proteome Res 12:2597–2610

    PubMed Central  CAS  PubMed  Google Scholar 

  • Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK (2009) Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci U S A 106:3567–3572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frisch C, Theis M, De Souza Silva MA, Dere E, Sohl G, Teubner B, Namestkova K, Willecke K, Huston JP (2003) Mice with astrocyte-directed inactivation of connexin43 exhibit increased exploratory behaviour, impaired motor capacities, and changes in brain acetylcholine levels. Eur J Neurosci 18:2313–2318

    PubMed  Google Scholar 

  • Fusco C, Frattini D, Pisani F, Spaggiari F, Ferlini A, Della Giustina E (2010) Coexistent central and peripheral nervous system involvement in a Charcot-Marie-Tooth syndrome X-linked patient. J Child Neurol 25:759–763

    PubMed  Google Scholar 

  • Giese KP, Martini R, Lemke G, Soriano P, Schachner M (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71:565–576

    CAS  PubMed  Google Scholar 

  • Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459

    CAS  PubMed  Google Scholar 

  • Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277:36725–36730

    CAS  PubMed  Google Scholar 

  • Goldberg GS, Valiunas V, Brink PR (2004) Selective permeability of gap junction channels. Biochim Biophys Acta 1662:96–101

    CAS  PubMed  Google Scholar 

  • Gonzaga-Jauregui C, Zhang F, Towne CF, Batish SD, Lupski JR (2010) GJB1/Connexin 32 whole gene deletions in patients with X-linked Charcot-Marie-Tooth disease. Neurogenetics 11:465–470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gorlin RJ, Meskin LH, St. Geme JW (1963) Oculodentodigital dysplasia. J Ped 63:69–75

    CAS  Google Scholar 

  • Hahn AF, Bolton CF, White CM, Brown WF, Tuuha SE, Tan CC, Ainsworth PJ (1999) Genotype/phenotype correlations in X-linked dominant Charcot-Marie-Tooth disease. Ann N Y Acad Sci 883:366–382

    CAS  PubMed  Google Scholar 

  • Hahn AF, Ainsworth PJ, Naus CC, Mao J, Bolton CF (2000) Clinical and pathological observations in men lacking the gap junction protein connexin 32. Muscle Nerve 999:S39–S48

    Google Scholar 

  • Hahn AF, Ainsworth PJ, Bolton CF, Bilbao JM, Vallat JM (2001) Pathological findings in the x-linked form of Charcot-Marie-Tooth disease: a morphometric and ultrastructural analysis. Acta Neuropathol 101:129–139

    CAS  PubMed  Google Scholar 

  • Halbrich M, Barnes J, Bunge M, Joshi C (2008) A V139M mutation also causes the reversible CNS phenotype in CMTX. Can J Neurol Sci 35:372–374

    PubMed  Google Scholar 

  • Hanemann CO, Bergmann C, Senderek J, Zerres K, Sperfeld AD (2003) Transient, recurrent, white matter lesions in X-linked Charcot-Marie-Tooth disease with novel connexin 32 mutation. Arch Neurol 60:605–609

    PubMed  Google Scholar 

  • Hattori N, Yamamoto M, Yoshihara T, Koike H, Nakagawa M, Yoshikawa H, Ohnishi A, Hayasaka K, Onodera O, Baba M, Yasuda H, Saito T, Nakashima K, Kira J, Kaji R, Oka N, Sobue G (2003) Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. Brain 126:134–151

    PubMed  Google Scholar 

  • Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 281:C922–C931

    CAS  PubMed  Google Scholar 

  • Hisama FM, Lee HH, Vashlishan A, Tekumalla P, Russell DS, Auld E, Goldstein JM (2001) Clinical and molecular studies in a family with probable X-linked dominant Charcot-Marie-Tooth disease involving the central nervous system. Arch Neurol 58:1891–1896

    CAS  PubMed  Google Scholar 

  • Houlden H, Girard M, Cockerell C, Ingram D, Wood NW, Goossens M, Walker RWH, Reilly MM (2004) Connexin 32 promoter P2 mutations: a mechanism of peripheral nerve dysfunction. Ann Neurol 56:730–734

    CAS  PubMed  Google Scholar 

  • Huang Y, Sirkowski EE, Stickney JT, Scherer SS (2005) Prenylation-defective human connexin32 mutants are normally localized and function equivalently to wild-type connexin32 in myelinating Schwann cells. J Neurosci 25:7111–7120

    CAS  PubMed  Google Scholar 

  • Ionasescu V, Ionasescu R, Searby C (1996a) Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy. Am J Med Genet 63:486–491

    CAS  PubMed  Google Scholar 

  • Ionasescu VV, Searby C, Ionasescu R, Neuhaus IM, Werner R (1996b) Mutations of the noncoding region of the connexin32 gene in X-linked dominant Charcot-Marie-Tooth neuropathy. Neurology 47:541–544

    CAS  PubMed  Google Scholar 

  • Jeng LJ, Balice-Gordon RJ, Messing A, Fischbeck KH, Scherer SS (2006) The effects of a dominant connexin32 mutant in myelinating Schwann cells. Mol Cell Neurosci 32:283–298

    CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (1992) Schwann cells: early lineage, regulation of proliferation and control of myelin formation. Curr Opin Neurobiol 2:575–581

    CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565

    PubMed  Google Scholar 

  • Kabzinska D, Kotruchow K, Ryniewicz B, Kochanski A (2011) Two pathogenic mutations located within the 5′-regulatory sequence of the GJB1 gene affecting initiation of transcription and translation. Acta Biochim Pol 58:359–363

    CAS  PubMed  Google Scholar 

  • Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KG, Nagy JI, Rash JE (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136:65–86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karadima G, Panas M, Floroskufi P, Kalfakis N, Vassilopoulos D (2006) Four novel connexin 32 mutations in X-linked Charcot-Marie-Tooth disease with phenotypic variability. J Neurol 253:263–264

    CAS  PubMed  Google Scholar 

  • Kassubek J, Bretschneider V, Sperfeld AD (2005) Corticospinal tract MRI hyperintensity in X-linked Charcot-Marie-Tooth disease. J Clin Neurosci 12:588–589

    PubMed  Google Scholar 

  • Kawakami H, Inoue K, Sakakihara I, Nakamura S (2002) Novel mutation in X-linked Charcot-Marie-Tooth disease associated with CNS impairment. Neurology 59:923–926

    CAS  PubMed  Google Scholar 

  • Kim GH, Kim KM, Suh SI, Ki CS, Eun BL (2014) Charcot-marie-tooth disease masquerading as acute demyelinating encephalomyelitis-like illness. Pediatrics 134:e270–e273

    PubMed  Google Scholar 

  • Klein D, Groh J, Wettmarshausen J, Martini R (2014) Nonuniform molecular features of myelinating Schwann cells in models for CMT1: distinct disease patterns are associated with NCAM and c-Jun upregulation. Glia 62:736–750

    PubMed  Google Scholar 

  • Kleopa KA, Yum SW, Scherer SS (2002) Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J Neurosci Res 68:522–534

    CAS  PubMed  Google Scholar 

  • Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS (2004) Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47:346–357

    PubMed  Google Scholar 

  • Kleopa KA, Zamba-Papanicolaou E, Alevra X, Nicolaou P, Georgiou DM, Hadjisavvas A, Kyriakides T, Christodoulou K (2006) Phenotypic and cellular expression of two novel connexin32 mutations causing CMT1X. Neurology 66:396–402

    CAS  PubMed  Google Scholar 

  • Kleopa KA, Abrams CK, Scherer SS (2012) How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease? Brain Res 1487:198–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kobsar I, Maurer M, Ott T, Martini R (2002) Macrophage-related demyelination in peripheral nerves of mice deficient in the gap junction protein connexin 32. Neurosci Lett 320:17–20

    CAS  PubMed  Google Scholar 

  • Kobsar I, Berghoff M, Samsam M, Wessig C, Maurer M, Toyka KV, Martini R (2003) Preserved myelin integrity and reduced axonopathy in connexin32-deficient mice lacking the recombination activating gene-1. Brain 126:804–813

    CAS  PubMed  Google Scholar 

  • Konishi T (1990) Dye coupling between mouse Schwann cells. Brain Res 508:85–92

    CAS  PubMed  Google Scholar 

  • Kozoriz MG, Church J, Ozog MA, Naus CC, Krebs C (2010) Temporary sequestration of potassium by mitochondria in astrocytes. J Biol Chem 285:31107–31119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krajewski KM, Lewis RA, Fuerst DR, Turansky C, Hinderer SR, Garbern J, Kamholz J, Shy ME (2000) Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A. Brain 123(Pt 7):1516–1527

    PubMed  Google Scholar 

  • Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Huttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hofmann A, Pfeifer A, Theis M, Steinhauser C (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 106:11336–11341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee MJ, Nelson I, Houlden H, Sweeney MG, Hilton-Jones D, Blake J, Wood NW, Reilly MM (2002) Six novel connexin32 (GJB1) mutations in X-linked Charcot-Marie-Tooth disease. J Neurol Neurosurg Psychiatry 73:304–306

    PubMed Central  PubMed  Google Scholar 

  • Li L, Head V, Timpe LC (2001) Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. Glia 33:57–71

    CAS  PubMed  Google Scholar 

  • Li X, Lynn BD, Olson C, Meier C, Davidson KG, Yasumura T, Rash JE, Nagy JI (2002) Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. Eur J Neurosci 16:795–806

    PubMed Central  PubMed  Google Scholar 

  • Li X, Ionescu AV, Lynn BD, Lu S, Kamasawa N, Morita M, Davidson KG, Yasumura T, Rash JE, Nagy JI (2004) Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience 126:611–630

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Cheng TS, Ho PW, Chan KH, Mak W, Cheung RT, Ramsden DB, Sham PC, Song Y, Ho SL (2009) 459C>T point mutation in 5′ non-coding region of human GJB1 gene is linked to X-linked Charcot-Marie-Tooth neuropathy. J Periph Nerv Syst 14:14–21

    CAS  Google Scholar 

  • Liang GS, de Miguel M, Gomez-Hernandez JM, Glass JD, Scherer SS, Mintz M, Barrio LC, Fischbeck KH (2005) Severe neuropathy with leaky connexin32 hemichannels. Ann Neurol 57:749–754

    CAS  PubMed  Google Scholar 

  • Liang D, Bhatta S, Gerzanich V, Simard JM (2007) Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 22:E2

    PubMed Central  PubMed  Google Scholar 

  • Lin C, Numakura C, Ikegami T, Shizuka M, Shoji M, Nicholson G, Hayasaka K (1999) Deletion and nonsense mutations of the connexin 32 gene associated with Charcot-Marie-Tooth disease. Tohok J Exp Med 188:239–244

    CAS  Google Scholar 

  • Loddenkemper T, Grote K, Evers S, Oelerich M, Stogbauer F (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol 249:584–595

    PubMed  Google Scholar 

  • Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29:7743–7752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58:1104–1117

    PubMed  Google Scholar 

  • Magnotti LM, Goodenough DA, Paul DL (2011a) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59:1064–1074

    PubMed Central  PubMed  Google Scholar 

  • Magnotti LM, Goodenough DA, Paul DL (2011b) Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia 59:26–34

    PubMed Central  PubMed  Google Scholar 

  • Mambetisaeva ET, Gire V, Evans WH (1999) Multiple connexin expression in peripheral nerve, Schwann cells, and Schwannoma cells. J Neurosci Res 57:166–175

    CAS  PubMed  Google Scholar 

  • Marques W Jr, Sweeney JG, Wood NW, Wroe SJ, Marques W (1999) Central nervous system involvement in a novel connexin 32 mutation affecting identical twins. J Neurol Neurosurg Psychiatry 66:803–804

    PubMed Central  PubMed  Google Scholar 

  • Martin PE, Mambetisaeva ET, Archer DA, George CH, Evans WH (2000) Analysis of gap junction assembly using mutated connexins detected in Charcot-Marie-Tooth X-linked disease. J Neurochem 74:711–720

    CAS  PubMed  Google Scholar 

  • Martini R, Zielasek J, Toyka KV, Giese KP, Schachner M (1995) Protein zero (P0)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nat Genet 11:281–285

    CAS  PubMed  Google Scholar 

  • Matsuyama W, Nakagawa M, Moritoyo T, Takashima H, Umehara F, Hirata K, Suehara M, Osame M (2001) Phenotypes of X-linked Charcot-Marie-Tooth disease and altered trafficking of mutant connexin 32 (GJB1). J Hum Genet 46:307–313

    CAS  PubMed  Google Scholar 

  • Maurer M, Kobsar I, Berghoff M, Schmid CD, Carenini S, Martini R (2002) Role of immune cells in animal models for inherited neuropathies: facts and visions. J Anat 200:405–414

    PubMed Central  PubMed  Google Scholar 

  • Meier C, Dermietzel R, Davidson KG, Yasumura T, Rash JE (2004) Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt-Lanterman incisures. J Neurosci 24:3186–3198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973

    CAS  PubMed  Google Scholar 

  • Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26:10984–10991

    CAS  PubMed  Google Scholar 

  • Murphy SM, Polke J, Manji H, Blake J, Reiniger L, Sweeney M, Houlden H, Brandner S, Reilly MM (2011) A novel mutation in the nerve-specific 5′UTR of the GJB1 gene causes X-linked Charcot-Marie-Tooth disease. J Peripher Nerv Syst 16:65–70

    CAS  PubMed  Google Scholar 

  • Murru MR, Vannelli A, Marrosu G, Cocco E, Corongiu D, Tranquilli S, Cherchi MV, Mura M, Barberini L, Mallarini G, Marrosu MG (2006) A novel Cx32 mutation causes X-linked Charcot-Marie-Tooth disease with brainstem involvement and brain magnetic resonance spectroscopy abnormalities. Neurol Sci 27:18–23

    CAS  PubMed  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32:29–44

    CAS  PubMed  Google Scholar 

  • Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88:447–468

    CAS  PubMed  Google Scholar 

  • Nagy JI, Li X, Rempel J, Stelmack G, Patel D, Staines WA, Yasumura T, Rash JE (2001) Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol 441:302–323

    CAS  PubMed  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003a) Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J Comp Neurol 464:356–370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003b) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215

    CAS  PubMed  Google Scholar 

  • Nagy J, Lynn B, Tress O, Willecke K, Rash J (2011) Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. Eur J Neurosci 34:263–271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagawa M, Takashima H, Umehara F, Arimura K, Miyashita F, Takenouchi N, Matsuyama W, Osame M (2001) Clinical phenotype in X-linked Charcot-Marie-Tooth disease with an entire deletion of the connexin 32 coding sequence. J Neurol Sci 185:31–37

    CAS  PubMed  Google Scholar 

  • Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    CAS  PubMed  Google Scholar 

  • Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21:5429–5438

    CAS  PubMed  Google Scholar 

  • Nicholson G, Corbett A (1996) Slowing of central conduction in X-linked Charcot-Marie-Tooth neuropathy shown by brain stem auditory evoked responses. J Neurol Neurosurg Psychiatry 61:43–46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholson G, Nash J (1993) Intermediate nerve conduction velocities define X-linked Charcot-Marie-Tooth neuropathy families. Neurology 43:2558–2564

    CAS  PubMed  Google Scholar 

  • Nicholson GA, Yeung L, Corbett A (1998) Efficient neurophysiologic selection of X-linked Charcot-Marie-Tooth families: ten novel mutations. Neurology 51:1412–1416

    CAS  PubMed  Google Scholar 

  • Niessen H, Willecke K (2000) Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes. FEBS Lett 466:112–114

    CAS  PubMed  Google Scholar 

  • Niessen H, Harz H, Bedner P, Kramer K, Willecke K (2000) Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci 113(Pt 8):1365–1372

    CAS  PubMed  Google Scholar 

  • Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559

    CAS  PubMed  Google Scholar 

  • Oh S, Ri Y, Bennett MV, Trexler EB, Verselis VK, Bargiello TA (1997) Changes in permeability caused by connexin 32 mutations underlie X- linked Charcot-Marie-Tooth disease. Neuron 19:927–938

    CAS  PubMed  Google Scholar 

  • Omori Y, Mesnil M, Yamasaki H (1996) Connexin 32 mutations from X-linked Charcot-Marie-Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7:907–916

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27:13949–13957

    CAS  PubMed  Google Scholar 

  • Orthmann-Murphy JL, Abrams CK, Scherer SS (2008) Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35:101–116

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orthmann-Murphy JL, Salsano E, Abrams CK, Bizzi A, Uziel G, Freidin MM, Lamantea E, Zeviani M, Scherer SS, Pareyson D (2009) Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132:426–438

    PubMed Central  PubMed  Google Scholar 

  • Panas M, Karadimas C, Avramopoulos D, Vassilopoulos D (1998) Central nervous system involvement in four patients with Charcot-Marie-Tooth disease with connexin 32 extracellular mutations [letter]. J Neurol Neurosurg Psychiatry 65:947–948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181:625–637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paulson HL, Garbern JY, Hoban TF, Krajewski KM, Lewis RA, Fischbeck KH, Grossman RI, Lenkinski R, Kamholz JA, Shy ME (2002) Transient central nervous system white matter abnormality in X-linked Charcot-Marie-Tooth disease. Ann Neurol 52:429–434

    CAS  PubMed  Google Scholar 

  • Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pham K, Nassiri N, Gupta R (2009) c-Jun, krox-20, and integrin beta4 expression following chronic nerve compression injury. Neurosci Lett 465:194–198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168:982–1008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rash JE, Duffy HS, Dudek FE, Bilhartz BL, Whalen LR, Yasumura T (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 388:265–292

    CAS  PubMed  Google Scholar 

  • Rash JE, Yasumura T, Dudek FE, Nagy JI (2001) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21:1983–2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reaume AG, De Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    CAS  PubMed  Google Scholar 

  • Ressot C, Gomes D, Dautigny A, Pham-Dinh D, Bruzzone R (1998) Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct behaviors: loss of function and altered gating properties. J Neurosci 18:4063–4075

    CAS  PubMed  Google Scholar 

  • Ri Y, Ballesteros JA, Abrams CK, Oh S, Verselis VK, Weinstein H, Bargiello TA (1999) The role of a conserved proline residue in mediating conformational changes associated wtih voltage gating of cx32 gap junctions. Biophys J 76:2887–2898

  • Rosenstein JM, Brightman MW (1979) Regeneration and myelination in autonomic ganglia transplanted to intact brain surfaces. J Neurocytol 8:359–379

    CAS  PubMed  Google Scholar 

  • Rosser T, Muir J, Panigrahy A, Baldwin EE, Boles RG (2010) Transient leukoencephalopathy associated with X-linked Charcot-Marie-Tooth disease. J Child Neurol 25:1013–1016

    PubMed  Google Scholar 

  • Rossor AM, Polke JM, Houlden H, Reilly MM (2013) Clinical implications of genetic advances in Charcot-Marie-Tooth disease. Nat Rev Neurol 9:562–571

    CAS  PubMed  Google Scholar 

  • Rouger H, LeGuern E, Birouk N, Gouider R, Tardieu S, Plassart E, Gugenheim M, Vallat JM, Louboutin JP, Bouche P, Agid Y, Brice A (1997) Charcot-Marie-Tooth disease with intermediate motor nerve conduction velocities: characterization of 14 Cx32 mutations in 35 families. Hum Mutat 10:443–452

    CAS  PubMed  Google Scholar 

  • Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc Res 77:325–333

    CAS  PubMed  Google Scholar 

  • Sahenk Z, Chen L (1998) Abnormalities in the axonal cytoskeleton induced by a connexin32 mutation in nerve xenografts. J Neurosci Res 51:174–184

    CAS  PubMed  Google Scholar 

  • Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 84:739–752

    CAS  PubMed  Google Scholar 

  • Sancho S, Magyar JP, Aguzzi A, Suter U (1999) Distal axonopathy in peripheral nerves of PMP22 mutant mice. Brain 122:1563–1577

    PubMed  Google Scholar 

  • Saporta MA, Shy ME (2013) Inherited peripheral neuropathies. Neurol Clin 31:597–619

    PubMed Central  PubMed  Google Scholar 

  • Saporta ASD, Sottile SL, Miller LJ, Feely SME, Siskind CE, Shy ME (2011) Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann Neurol 69:22–33

    PubMed Central  PubMed  Google Scholar 

  • Sargiannidou I, Ahn M, Enriquez AD, Peinado A, Reynolds R, Abrams C, Scherer SS, Kleopa KA (2008) Human oligodendrocytes express Cx31.3: function and interactions with Cx32 mutants. Neurobiol Dis 30:221–233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sargiannidou I, Vavlitou N, Aristodemou S, Hadjisavvas A, Kyriacou K, Scherer SS, Kleopa KA (2009) Connexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J Neurosci 29:4736–4749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sato K, Kubo S, Fujii H, Okamoto M, Takahashi K, Takamatsu K, Tanaka A, Kuriyama M (2012) Diffusion tensor imaging and magnetic resonance spectroscopy of transient cerebral white matter lesions in X-linked Charcot-Marie-Tooth disease. J Neurol Sci 316:178–180

    PubMed  Google Scholar 

  • Schelhaas HJ, Van Engelen BG, Gabreels-Festen AA, Hageman G, Vliegen JH, Van Der Knaap MS, Zwarts MJ (2002) Transient cerebral white matter lesions in a patient with connexin 32 missense mutation. Neurology 59:2007–2008

    CAS  PubMed  Google Scholar 

  • Scherer SS, Deschenes SM, Xu YT, Grinspan JB, Fischbeck KH, Paul DL (1995) Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 15:8281–8294

    CAS  PubMed  Google Scholar 

  • Scherer SS, Xu YT, Nelles E, Fischbeck K, Willecke K, Bone LJ (1998) Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24:8–20

    CAS  PubMed  Google Scholar 

  • Schrander-Stumpel CT, Franke CL (1996) Central nervous system abnormalities in oculodentodigital dysplasia. Genet Couns 7:233–235

    CAS  PubMed  Google Scholar 

  • Schulz R, Heusch G (2006) Connexin43 and ischemic preconditioning. Adv Cardiol 42:213–227

    CAS  PubMed  Google Scholar 

  • Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266

    CAS  PubMed  Google Scholar 

  • Seeman P, Mazanec R, Ctvrteckova M, Smilkova D (2001) Charcot-Marie-Tooth type X: a novel mutation in the Cx32 gene with central conduction slowing. Int J Mol Med 8:461–468

    CAS  PubMed  Google Scholar 

  • Senderek J, Bergmann C, Quasthoff S, Ramaekers VT, Schroder JM (1998) X-linked dominant Charcot-Marie-Tooth disease: nerve biopsies allow morphological evaluation and detection of connexin32 mutations (Arg15Trp, Arg22Gln). Acta Neuropathol 95:443–449

    CAS  PubMed  Google Scholar 

  • Senderek J, Hermanns B, Bergmann C, Boroojerdi B, Bajbouj M, Hungs M, Ramaekers VT, Quasthoff S, Karch D, Schroder JM (1999) X-linked dominant Charcot-Marie-Tooth neuropathy: clinical, electrophysiological, and morphological phenotype in four families with different connexin32 mutations(1). J Neurol Sci 167:90–101

    CAS  PubMed  Google Scholar 

  • Shy ME, Siskind C, Swan ER, Krajewski KM, Doherty T, Fuerst DR, Ainsworth PJ, Lewis RA, Scherer SS, Hahn AF (2007) CMT1X phenotypes represent loss of GJB1 gene function. Neurology 68:849–855

    CAS  PubMed  Google Scholar 

  • Siskind C, Feely SM, Bernes S, Shy ME, Garbern JY (2009) Persistent CNS dysfunction in a boy with CMT1X. J Neurol Sci 279:109–113

    PubMed  Google Scholar 

  • Sohl G, Eiberger J, Jung YT, Kozak CA, Willecke K (2001) The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development. Biol Chem 382:973–978

    CAS  PubMed  Google Scholar 

  • Srinivasan J, Leventer RJ, Kornberg AJ, Dahl HH, Ryan MM (2008) Central nervous system signs in X-Linked Charcot-Marie-Tooth disease after hyperventilation. Pediatr Neurol 38:293–295

    PubMed  Google Scholar 

  • Stancanelli C, Taioli F, Testi S, Fabrizi GM, Arena MG, Granata F, Russo M, Gentile L, Vita G, Mazzeo A (2012) Unusual features of central nervous system involvement in CMTX associated with a novel mutation of GJB1 gene. J Peripher Nerv Syst 17:407–411

    CAS  PubMed  Google Scholar 

  • Stanislaw CL, Narvaez C, Roger RG, Woodard CS (1998) Oculodentodigital dysplasia with cerebral white matter abnormalies: an additional case. Proc Greenwood Genet Center 17:20–24

    Google Scholar 

  • Stojkovic T, Latour P, Vandenberghe A, Hurtevent JF, Vermersch P (1999) Sensorineural deafness in X-linked Charcot-Marie-Tooth disease with connexin 32 mutation (R142Q). Neurology 52:1010–1014 [published erratum appears in Neurology 1999 Jun 10;52(9):1952]

    CAS  PubMed  Google Scholar 

  • Sutor B, Schmolke C, Teubner B, Schirmer C, Willecke K (2000) Myelination defects and neuronal hyperexcitability in the neocortex of connexin 32-deficient mice. Cereb Cortex 10:684–697

    CAS  PubMed  Google Scholar 

  • Tabaraud F, Lagrange E, Sindou P, Vandenberghe A, Levy N, Vallat JM (1999) Demyelinating X-linked Charcot-Marie-Tooth disease: unusual electrophysiological findings. Muscle Nerve 22:1442–1447

    CAS  PubMed  Google Scholar 

  • Takashima H, Nakagawa M, Umehara F, Hirata K, Suehara M, Mayumi H, Yoshishige K, Matsuyama W, Saito M, Jonosono M, Arimura K, Osame M (2003) Gap junction protein beta 1 (GJB1) mutations and central nervous system symptoms in X-linked Charcot-Marie-Tooth disease. Acta Neurol Scand 107:31–37

    CAS  PubMed  Google Scholar 

  • Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, Paul DL, Lin X (2006) Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26:1991–1999

    CAS  PubMed  Google Scholar 

  • Taylor RA, Simon EM, Marks HG, Scherer SS (2003) The CNS phenotype of X-linked Charcot-Marie-Tooth disease: more than a peripheral problem. Neurology 61:1475–1478

    PubMed  Google Scholar 

  • Tetzlaff W (1982) Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol 11:839–858

    CAS  PubMed  Google Scholar 

  • Teubner B, Odermatt B, Guldenagel M, Sohl G, Degen J, Bukauskas F, Kronengold J, Verselis VK, Jung YT, Kozak CA, Schilling K, Willecke K (2001) Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 21:1117–1126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Doring B, Frisch C, Sohl G, Teubner B, Euwens C, Huston J, Steinhauser C, Messing A, Heinemann U, Willecke K (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 23:766–776

    CAS  PubMed  Google Scholar 

  • Tress O, Maglione M, May D, Pivneva T, Richter N, Seyfarth J, Binder S, Zlomuzica A, Seifert G, Theis M, Dere E, Kettenmann H, Willecke K (2012) Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci 32:7499–7518

    CAS  PubMed  Google Scholar 

  • Tsai PC, Chen CH, Liu AB, Chen YC, Soong BW, Lin KP, Yet SF, Lee YC (2013) Mutational analysis of the 5′ non-coding region of GJB1 in a Taiwanese cohort with Charcot-Marie-Tooth neuropathy. J Neurol Sci 332:51–55

    CAS  PubMed  Google Scholar 

  • Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, Nurnberg P, Hubner C, Weschke B, Gartner J (2004) Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet 75:251–260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vallat JM, Mathis S, Funalot B (2013) The various Charcot-Marie-Tooth diseases. Curr Opin Neurol 26:473–480

    PubMed  Google Scholar 

  • VanSlyke JK, Deschenes SM, Musil LS (2000) Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 11:1933–1946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vavlitou N, Sargiannidou I, Markoullis K, Kyriacou K, Scherer SS, Kleopa KA (2010) Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy. J Neuropathol Exp Neurol 69:945–958

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vorisek I, Hajek M, Tintera J, Nicolay K, Sykova E (2002) Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn Reson Med 48:994–1003

    CAS  PubMed  Google Scholar 

  • Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    CAS  PubMed  Google Scholar 

  • Wang HL, Chang WT, Yeh TH, Wu T, Chen MS, Wu CY (2004) Functional analysis of connexin-32 mutants associated with X-linked dominant Charcot-Marie-Tooth disease. Neurobiol Dis 15:361–370

    CAS  PubMed  Google Scholar 

  • Wasseff SK, Scherer SS (2011) Cx32 and Cx47 mediate oligodendrocyte: astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis 42:506–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • White TW, Paul DL, Goodenough DA, Bruzzone R (1995) Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 6:459–470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yiu EM, Geevasinga N, Nicholson GA, Fagan ER, Ryan MM, Ouvrier RA (2011) A retrospective review of X-linked Charcot-Marie-Tooth disease in childhood. Neurology 76:461–466

    CAS  PubMed  Google Scholar 

  • Yoshimura T, Satake M, Ohnishi A, Tsutsumi Y, Fujikura Y (1998) Mutations of connexin32 in Charcot-Marie-Tooth disease type X interfere with cell-to-cell communication but not cell proliferation and myelin- specific gene expression. J Neurosci Res 51:154–161

    CAS  PubMed  Google Scholar 

  • Yum SW, Kleopa KA, Shumas S, Scherer SS (2002) Diverse trafficking abnormalities of connexin32 mutants causing CMTX. Neurobiol Dis 11:43–52

    CAS  PubMed  Google Scholar 

  • Zambelis T, Panas M, Kokotis P, Karadima G, Kararizou E, Karandreas N (2008) Central motor and sensory pathway involvement in an X-linked Charcot-Marie-Tooth family. Acta Neurol Belg 108:44–47

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Muscular Dystrophy Association and the National Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles K. Abrams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrams, C.K., Freidin, M. GJB1-associated X-linked Charcot–Marie–Tooth disease, a disorder affecting the central and peripheral nervous systems. Cell Tissue Res 360, 659–673 (2015). https://doi.org/10.1007/s00441-014-2014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2014-6

Keywords

Navigation