Skip to main content
Log in

The cell biology of α-synuclein

A sticky problem?

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the most common neurodegenerative motor disorder, marked by chronic progressive loss of neurons in the substantia nigra, thereby damaging purposeful control of movement. For decades, it was believed that PD was caused solely by environmental causes. However, the discovery of genetic factors involved in PD has revolutionized our attempts to understand the disease’s pathology. PD now appears to be more polygenetic than previously thought and is most likely caused by a complex interaction of genetic risks and environmental exposures. The first gene found to be mutated in PD encodes for the presynaptic protein α-synuclein, which is also a major component of Lewy bodies and Lewy neurites, the neuropathological hallmarks of the disease. While these findings provide a classic example of how rare genetic mutations in disease can point to important pathways in idiopathic disease pathologies, much of the study of α-synuclein has focused on understanding how this protein undergoes the transition from an unfolded monomer to amorphous aggregates or Lewy body-like filaments rather than addressing what its fundamental function might be. Since alterations in synuclein function may predispose to the disease pathology of PD, regardless of the presence of genetic mutations, a more thorough understanding of the cellular regulation and function of α-synuclein may be of crucial importance to our understanding of this degenerating disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich A., Schmitz Y., Farinas I., Choi-Lundberg D., Ho W. H., Castillo P. E., et al. (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Ancolio K., Alves da Costa C., Ueda K., and Checler F. (2000) Alpha-synuclein and the Parkinson’s disease-related mutant Ala53Thr- alpha-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. Neurosci. Lett. 285, 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Arima K., Ueda K., Sunohara N., Hirai S., Izumiyama Y., Tonozuka-Uehara H., and Kawai M. (1998) Immunoelectron-microscopic demonstration of NACP / alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 808, 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Baba M., Nakajo S., Tu P. H., Tomita T., Nakaya K., Lee V. M., et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884.

    PubMed  CAS  Google Scholar 

  • Barzilai A., Melamed E., and Shirvan A. (2001) Is there a rationale for neuroprotection against dopamine toxicity in Parkinson’s disease? Cell Mol. Neurobiol. 21, 215–235.

    Article  PubMed  CAS  Google Scholar 

  • Bayer T. A., Jakala P., Hartmann T., Egensperger R., Buslei R., Falkai P., and Beyreuther K. (1999) Neural expression profile of alpha-synuclein in developing human cortex. Neuroreport 10, 2799–2803.

    Article  PubMed  CAS  Google Scholar 

  • Bennett M. C., Bishop J. F., Leng Y., Chock P. B., Chase T. N., and Mouradian M. M. (1999) Degradation of alpha-synuclein by proteasome. J. Biol. Chem. 274, 33,855–33,858.

    CAS  Google Scholar 

  • Betarbet R., Sherer T. B., MacKenzie G., Garcia-Osuna M., Panov A. V., and Greenamyre J. T. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  • Biere A. L., Wood S. J., Wypych J., Steavenson S., Jiang Y., Anafi D., et al. (2000) Parkinson’s disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J. Biol. Chem. 275, 34,574–34,579.

    Article  CAS  Google Scholar 

  • Campbell B. C., McLean C. A., Culvenor J. G., Gai W. P., Blumbergs P. C., Jakala P., et al. (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J. Neurochem. 76, 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. L. and Mattson M. P. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58, 167–190.

    Article  PubMed  CAS  Google Scholar 

  • Choi P., Golts N., Snyder H., Chong M., Petrucelli L., Hardy J., et al. (2001) Co-association of parkin and alpha-synuclein. Neuroreport 12, 2839–2843.

    Article  PubMed  CAS  Google Scholar 

  • Choinowski T., Hauser H., and Piontek K. (2000) Structure of sterol carrier protein 2 at 1.8 A resolution reveals a hydrophobic tunnel suitable for lipid binding. Biochemistry 39, 1897–1902.

    Article  PubMed  CAS  Google Scholar 

  • Chung K. K., Zhang Y., Lim K. L., Tanaka Y., Huang H., Gao J., et al. (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7, 1144–1150.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Clayton D. F. and George J. M. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Clayton D. F. and George J. M. (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 120–129.

    Article  PubMed  CAS  Google Scholar 

  • Cole N. B., Murphy D. D., Grider T., et al. (2002) Lipid droplet binding and oligomeric properties of the Parkinson’s disease protein alpha-synuclein. J. Biol. Chem. 277, 6344–6352.

    Article  PubMed  CAS  Google Scholar 

  • Conway K. A., Lee S. J., Rochet J. C., Ding T. T., Williamson R. E., and Lansbury P. T., Jr. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Conway K. A., Rochet J. C., Bieganski R. M., and Lansbury Jr P. T. (2001) Kinetic stabilization of the alpha synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294, 1346–1349.

    Article  PubMed  CAS  Google Scholar 

  • Crowther R. A., Jakes R., Spillantini M. G., and Goedert M. (1998) Synthetic filaments assembled from C-terminally truncated alpha- synuclein. FEBS Lett. 436, 309–312.

    Article  PubMed  CAS  Google Scholar 

  • Davidson W. S., Jonas A., Clayton D. F., and George J. M. (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J. W. and Kelly R. B. (1981) Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry 20, 378–385.

    Article  PubMed  CAS  Google Scholar 

  • Eliezer D., Kutluay E., Bussell R. Jr., and Browne, G. (2001) Conformational properties of alpha-synuclein in its free and lipid- associated states. J. Mol. Biol. 307, 1061–1073.

    Article  PubMed  CAS  Google Scholar 

  • Ellis C. E., Schwartzberg P. L., Grider T. L., Fink D. W., and Nussbaum R. L. (2000) Alpha-synuclein is phosphorylated by members of the Src family of protein tyrosine kinases. J. Biol. Chem. 14, 14.

    Google Scholar 

  • Engelender S., Kaminsky Z., Guo X., Sharp A. H., Amaravi R. K., Kleiderlein J. J., et al. (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat. Genet. 22, 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Fallon L., Moreau F., Croft B. G., Labib N., Gu W. J., and Fon E. A. (2001) Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J. Biol. Chem. 25, 25.

    Google Scholar 

  • Farrer M., Maraganore D. M., Lockhart P., Singleton A., Lesnick T. G., de Andrade M., et al. (2001) alpha-Synuclein gene haplotypes are associated with Parkinson’s disease. Hum. Mol. Genet. 10, 1847–1851.

    Article  PubMed  CAS  Google Scholar 

  • Feany M. B. and Bender W. W. (2000) A Drosophila model of Parkinson’s disease. Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Fu H., Subramanian R. R., and Masters S. C. (2000) 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647.

    Article  PubMed  CAS  Google Scholar 

  • Gai W. P., Blessing W. W., and Blumbergs P. C. (1995) Ubiquitin-positive degenerating neurites in the brainstem in Parkinson’s disease. Brain 118, 1447–1459.

    Article  PubMed  Google Scholar 

  • Gai W. P., Yuan H. X., Li X. Q., Power J. T., Blumbergs P. C., and Jensen P. H. (2000) In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies. Exp. Neurol. 166, 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Galvin J. E., Schuck T. M., Lee V. M., and Trojanowski J. Q. (2001) Differential expression and distribution of alpha-, beta-, and gamma-synuclein in the developing human substantia nigra. Exp. Neurol. 168, 347–355.

    Article  PubMed  CAS  Google Scholar 

  • George J. M., Jin H., Woods W. S., and Clayton D. F. (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B. I., Murray I. V., Trojanowski J. Q., and Lee V. M. (2001) Ahydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J. Biol. Chem. 276, 2380–2386.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M. (2001) Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492–501.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M. S. and Lansbury P. T. Jr. (2000) Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat. Cell Biol. 2, E115–119.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Tortosa E., Newell K., Irizarry M. C., Sanders J. L., and Hyman B. T. (2000) alpha-Synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol. (Berl) 99, 352–357.

    Article  CAS  Google Scholar 

  • Hardy J. and Gwinn-Hardy K. (1998) Genetic classification of primary neurodegenerative disease. Science 282, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Hsu L. J., Sisk A., Xia Y., Takeda A., Sundsmo M., and Masliah E. (1998) Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res. 799, 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Yoshimoto M., Sisk A., Hsu L. J., Sundsmo M., Kittel A., et al. (1997) NACP, a synaptic protein involved in Alzheimer’s disease, is differentially regulated during megakaryocyte differentiation. Biochem. Biophys. Res. Commun. 237, 611–616.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S., Wakabayashi K., Ishikawa A., Nagai H., Saito M., Maruyama M., et al. (2000) An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov. Disord. 15, 884–888.

    Article  PubMed  CAS  Google Scholar 

  • Hertzel A. V. and Bernlohr D. A. (2000) The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol. Metab. 11, 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M. (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 7, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Hsu L. J., Mallory M., Xia Y., Veinbergs I., Hashimoto M., Yoshimoto M., et al. (1998) Expression pattern of synucleins (non-Abeta component of Alzheimer’s disease amyloid precursor protein/alpha-synuclein) during murine brain development. J. Neurochem. 71, 338–344.

    Article  PubMed  CAS  Google Scholar 

  • Hurtig H. I., Trojanowski J. Q., Galvin J., Ewbank D., Schmidt M. L., Lee V. M., et al. (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54, 1916–1921.

    PubMed  CAS  Google Scholar 

  • Imai Y., Soda M., and Takahashi R. (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 275, 35,661–35,664.

    CAS  Google Scholar 

  • Irizarry M. C., Kim T. W., McNamara M., Tanzi R. E., George J. M., Clayton D. F., and Hyman B. T. (1996) Characterization of the precursor protein of the non-A beta component of senile plaques (NACP) in the human central nervous system. J. Neuropathol. Exp. Neurol. 55, 889–895.

    PubMed  CAS  Google Scholar 

  • Iwai A., Masliah E., Yoshimoto M., Ge N., Flanagan L., de Silva H. A., et al. (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T., Yamaguchi H., Fujimuro M., Yokosawa H., Ihara Y., Trojanowski J. Q., and Lee V. M. (1996) Purification and characterization of Lewy bodies from the brains of patients with diffuse Lewy body disease. Am. J. Pathol. 148, 1517–1529.

    PubMed  CAS  Google Scholar 

  • Jakes R., Spillantini M. G., and Goedert M. (1994) Identification of two distinct synucleins from human brain. FEBS Lett. 345, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Jenco J. M., Rawlingson A., Daniels B., and Morris A. J. (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37, 4901–4909.

    Article  PubMed  CAS  Google Scholar 

  • Jensen P. H., Hojrup P., Hager H., Nielsen M. S., Jacobsen L., Olesen O. F., et al. (1997) Binding of Abeta to alpha- and beta-synucleins: identification of segments in alpha-synuclein/NAC precursor that bind Abeta and NAC. Biochem. J. 323, 539–546.

    PubMed  CAS  Google Scholar 

  • Jensen P. H., Li J. Y., Dahlstrom A., and Dotti C. G. (1999) Axonal transport of synucleins is mediated by all rate components. Eur. J. Neurosci. 11, 3369–3376.

    Article  PubMed  CAS  Google Scholar 

  • Jo E., McLaurin J., Yip C. M., St George-Hyslop P., and Fraser P. E. (2000) alpha-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34,328–34,334.

    CAS  Google Scholar 

  • Kahle P. J., Neumann M., Ozmen L., Muller V., Jacobsen H., Schindzielorz A., et al. (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J. Neurosci. 20, 6365–6373.

    PubMed  CAS  Google Scholar 

  • Kim T. D., Paik S. R., Yang C. H., and Kim J. (2000) Structural changes in alpha-synuclein affect its chaperone-like activity in vitro. Protein Sci. 9, 2489–2496.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Klionsky D. J. and Emr S. D. (2000) Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721.

    Article  PubMed  CAS  Google Scholar 

  • Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Kruger R., Vieira-Saecker A. M., Kuhn W., Berg D., Muller T., Kuhnl N., et al. (1999) Increased susceptibility to sporadic Parkinson’s disease by a certain combined alpha-synuclein / apolipoprotein E genotype. Ann. Neurol. 45, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Langston J. W., Sastry S., Chan P., Forno L. S., Bolin L. M., and Di Monte D. A. (1998) Novel alpha-synuclein-immunoreactive proteins in brain samples from the Contursi kindred, Parkinson’s, and Alzheimer’s disease. Exp. Neurol. 154, 684–690.

    Article  PubMed  CAS  Google Scholar 

  • Lavedan C. (1998) The synuclein family. Genome Res. 8, 871–880.

    PubMed  CAS  Google Scholar 

  • Lavedan C., Leroy E., Dehejia A., Buchholtz S., Dutra A., Nussbaum R. L., and Polymeropoulos M. H. (1998) Identification, localization and characterization of the human gamma-synuclein gene. Hum. Genet. 103, 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Layfield R., Alban A., Mayer R. J., and Lowe J. (2001) The ubiquitin protein catabolic disorders. Neuropathol. Appl. Neurobiol. 27, 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Lee D., Lee E. K., Lee J. H., Chang C. S., and Paik S. R. (2001a) Self-oligomerization and protein aggregation of alpha-synuclein in the presence of Coomassie Brilliant Blue. Eur. J. Biochem. 268, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Lee F. J., Liu F., Pristupa Z. B., and Niznik H. B. (2001b) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J. 15, 916–926.

    Article  PubMed  CAS  Google Scholar 

  • Lee H. J., Choi C., and Lee S. J. (2001c) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of cytosolic form. J. Biol. Chem. 25, 25.

    Google Scholar 

  • Li J. Y., De Camilli P., and Dahlstrom A. (1997) Intraneuronal trafficking and distribution of amphiphysin and synaptojanin in the rat peripheral nervous system and the spinal cord. Eur. J. Neurosci. 9, 1864–1874.

    Article  PubMed  CAS  Google Scholar 

  • Li J. Y., Jahn R., and Dahlstrom A. (1995) Rab3a, a small GTP-binding protein, undergoes fast anterograde transport but not retrograde transport in neurons. Eur. J. Cell Biol. 67, 297–307.

    PubMed  CAS  Google Scholar 

  • Maroteaux L., Campanelli J. T., and Scheller R. H. (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804–2815.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21, 53–57.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Olanow C. W., Halliwell B., Isacson O., and Jenner P. (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat. Rev. Neurosci. 2, 589–594.

    Article  PubMed  CAS  Google Scholar 

  • Melloni E. and Pontremoli S. (1989) The calpains. Trends Neurosci. 12, 438–444.

    Article  PubMed  CAS  Google Scholar 

  • Mengual E., Arizti P., Rodrigo J., Gimenez-Amaya J. M., and Castano J. G. (1996) Immunohistochemical distribution and electron microscopic subcellular localization of the proteasome in the rat CNS. J. Neurosci. 16, 6331–6341.

    PubMed  CAS  Google Scholar 

  • Mishra V. K. and Palgunachari M. N. (1996) Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Biochemistry 35, 11210–11220.

    Article  PubMed  CAS  Google Scholar 

  • Moore K. and Roberts L. J. 2nd (1998) Measurement of lipid peroxidation. Free Radic. Res. 28, 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Mori H., Kondo T., Yokochi M., Matsumine H., Nakagawa-Hattori Y., Miyake T., et al. (1998) Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 51, 890–892.

    PubMed  CAS  Google Scholar 

  • Murphy D. D., Rueter S. M., Trojanowski J. Q., and Lee V. M. (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214–3220.

    PubMed  CAS  Google Scholar 

  • Nakamura T., Yamashita H., Takahashi T., and Nakamura S. (2001) Activated Fyn phosphorylates alpha-synuclein at tyrosine residue 125. Biochem. Biophys. Res. Commun. 280, 1085–1092.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan V. and Scarlata S. (2001) Membrane binding and self-association of alpha-synucleins. Biochemistry 40, 9927–9934.

    Article  PubMed  CAS  Google Scholar 

  • Neystat M., Lynch T., Przedborski S., Kholodilov N., Rzhetskaya M., and Burke R. E. (1999) Alpha-synuclein expression in substantia nigra and cortex in Parkinson’s disease. Mov. Disord. 14, 417–422.

    Article  PubMed  CAS  Google Scholar 

  • Obsil T., Ghirlando R., Klein D. C., Ganguly S., and Dyda F. (2001) Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Okochi M., Walter J., Koyama A., Nakajo S., Baba M., Iwatsubo T., Meijer L., Kahle P. J., and Haass C. (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J. Biol. Chem. 275, 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Osborne S. L., Meunier F. A., and Schiavo G. (2001) Phosphoinositides as key regulators of synaptic function. Neuron 32, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Ostrerova N., Petrucelli L., Farrer M., Mehta N., Choi P., Hardy J., and Wolozin B. (1999) alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci. 19, 5782–5791.

    PubMed  CAS  Google Scholar 

  • Paik S. R., Lee J. H., Kim D. H., Chang C. S., and Kim Y. S. (1998) Self-oligomerization of NACP, the precursor protein of the non-amyloid beta / A4 protein (A beta) component of Alzheimer’s disease amyloid, observed in the presence of a C-terminal A beta fragment (residues 25- 35). FEBS Lett. 421, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Paik S. R., Shin H. J., Lee J. H., Chang C. S., and Kim J. (1999) Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem. J. 340, 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Paxinou E., Chen Q., Weisse M., Giasson B. I., Norris E. H., Rueter S. M., et al. (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061.

    PubMed  CAS  Google Scholar 

  • Perrin R. J., Woods W. S., Clayton D. F., and George J. M. (2000) Interaction of human alpha-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J. Biol. Chem. 275, 34,393–34,398.

    Article  CAS  Google Scholar 

  • Perrin R. J., Woods W. S., Clayton D. F., and George J. M. (2001) Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J. Biol. Chem. 276, 41,958–41,962.

    CAS  Google Scholar 

  • Petersen K., Olesen O. F., and Mikkelsen J. D. (1999) Developmental expression of alpha-synuclein in rat hippocampus and cerebral cortex. Neuroscience 91, 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Pronin A. N., Morris A. J., Surguchov A., and Benovic J. L. (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J. Biol. Chem. 275, 26,515–26,522.

    Article  CAS  Google Scholar 

  • Refsgaard H. H., Tsai L., and Stadtman E. R. (2000) Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc. Natl. Acad. Sci. USA 97, 611–616.

    Article  PubMed  CAS  Google Scholar 

  • Rideout H. J., Larsen K. E., Sulzer D., and Stefanis L. (2001) Proteasomal inhibition leads to formation of ubiquitin / alpha-synuclein-immunoreactive inclusions in PC12 cells. J. Neurochem. 78, 899–908.

    Article  PubMed  CAS  Google Scholar 

  • Rockenstein E., Hansen L. A., Mallory M., Trojanowski J. Q., Galasko D., and Masliah E. (2001) Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Res. 914, 48–56.

    Article  PubMed  CAS  Google Scholar 

  • Sharon R., Goldberg M. S., Bar-Josef I., Betensky R. A., Shen J., and Selkoe D. J. (2001) alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl. Acad. Sci. USA 98, 9110–9115.

    Article  PubMed  CAS  Google Scholar 

  • Shibayama-Imazu T., Okahashi I., Omata K., Nakajo S., Ochiai H., Nakai Y., et al. (1993) Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Res. 622, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Hattori N., Kubo S., Mizuno Y., Asakawa S., Minoshima S., et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Hattori N., Kubo S., Yoshikawa M., Kitada T., Matsumine H., et al. (1999) Immunohistochemical and subcellular localization of Parkin protein: absence of protein in autosomal recessive juvenile parkinsonism patients. Ann. Neurol. 45, 668–672.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Schlossmacher M. G., Hattori N., Frosch M. P., Trockenbacher A., Schneider R., et al. (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Shin H. J., Lee E. K., Lee J. H., Lee D., Chang C. S., Kim Y. S., and Paik S. R. (2000) Eosin interaction of alpha-synuclein leading to protein self-oligomerization. Biochim. Biophys. Acta 1481, 139–146.

    PubMed  CAS  Google Scholar 

  • Souza J. M., Giasson B. I., Chen Q., Lee V. M., and Ischiropoulos H. (2000a) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 275, 18,344–18,349.

    CAS  Google Scholar 

  • Souza J. M., Giasson B. I., Lee V. M., and Ischiropoulos H. (2000b) Chaperone-like activity of synucleins. FEBS Lett. 474, 116–119.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G., Crowther R. A., Jakes R., Hasegawa M., and Goedert M. (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R., and Goedert M. (1997) Alpha-synuclein in Lewy bodies. Nature 388, 839–840.

    Article  PubMed  CAS  Google Scholar 

  • Stefanis L., Kholodilov N., Rideout H. J., Burke R. E., and Greene L. A. (2001) Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. J. Neurochem. 76, 1165–1176.

    Article  PubMed  CAS  Google Scholar 

  • Storch J. and Thumser A. E. (2000) The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta 1486, 28–44.

    PubMed  CAS  Google Scholar 

  • Surguchov A., Surgucheva I., Solessio E., and Baehr W. (1999) Synoretin: a new protein belonging to the synuclein family. Mol. Cell Neurosci. 13, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Tan E. K., Matsuura T., Nagamitsu S., Khajavi M., Jankovic J., and Ashizawa T. (2000) Polymorphism of NACP-Rep1 in Parkinson’s disease: an etiologic link with essential tremor? Neurology 54, 1195–1198.

    PubMed  CAS  Google Scholar 

  • Tanji K., Imaizumi T., Yoshida H., Mori F., Yoshimoto M., Satoh K., and Wakabayashi K. (2001) Expression of alpha-synuclein in a human glioma cell line and its up- regulation by interleukin-1beta. Neuroreport 12, 1909–1912.

    Article  PubMed  CAS  Google Scholar 

  • Touchman J. W., Dehejia A., Chiba-Falek O., Cabin D. E., Schwartz J. R., Orrison B. M., et al. (2001) Human and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res. 11, 78–86.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Fukushima H., Masliah E., Xia Y., Iwai A., Yoshimoto M., et al. (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 11,282–11,286.

    Article  CAS  Google Scholar 

  • Uversky V. N., Gillespie J. R., and Fink A. L. (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41, 415–427.

    Article  PubMed  CAS  Google Scholar 

  • Uversky V. N., Li J., and Fink A. L. (2001a) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J. Biol. Chem. 276, 10737–10744.

    Article  PubMed  CAS  Google Scholar 

  • Uversky V. N., Li J., and Fink A. L. (2001b) Metal-triggered structural transformations, aggregation and fibrillation of human alpha-synuclein. A possible molecular link between parkinson’s disease and heavy metal exposure. J. Biol. Chem. 276, 44284–44296.

    Article  PubMed  CAS  Google Scholar 

  • Uversky V. N., Li J., and Fink A. L. (2001c) Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett. 500, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Vila M., Vukosavic S., Jackson-Lewis V., Neystat M., Jakowec M., and Przedborski S. (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J. Neurochem. 74, 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Volles M. J., Lee S. J., Rochet J. C., Shtilerman M. D., Ding T. T., Kessler J. C., and Lansbury P. T. Jr. (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40, 7812–7819.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K., Engelender S., Yoshimoto M., Tsuji S., Ross C. A., and Takahashi H. (2000) Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Ann. Neurol. 47, 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K., Matsumoto K., Takayama K., Yoshimoto M., and Takahashi H. (1997) NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci. Lett. 239, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb P. H., Zhen W., Poon A. W., Conway K. A., and Lansbury P. T. Jr. (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715.

    Article  PubMed  CAS  Google Scholar 

  • Withers G. S., George J. M., Banker G. A., and Clayton D. F. (1997) Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res. Dev. Brain Res. 99, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Wood S. J., Wypych J., Steavenson S., Louis J. C., Citron M., and Biere A. L. (1999) alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J. Biol. Chem. 274, 19,509–19,512.

    CAS  Google Scholar 

  • Xia Y., Rohan de Silva H. A., Rosi B. L., Yamaoka L. H., Rimmler J. B., Pericak-Vance M. A., et al. (1996) Genetic studies in Alzheimer’s disease with an NACP/alpha-synuclein polymorphism. Ann. Neurol. 40, 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Dawson V. L., and Dawson T. M. (2000a) Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol. Dis. 7, 240–250.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Gao J., Chung K. K., Huang H., Dawson V. L., and Dawson T. M. (2000b) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. USA 97, 13354–13359.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson B. Cole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, N.B., Murphy, D.D. The cell biology of α-synuclein. Neuromol Med 1, 95–109 (2002). https://doi.org/10.1385/NMM:1:2:95

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:1:2:95

Index Entries

Navigation