Skip to main content
Log in

Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements

A pilot study

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction: Continuous measurement of intracranial pressure (ICP) requires the invasive placement of epidural, parenchymal, or intraventricular devices. For critical single-point assessments, lumbar puncture may not always be practical. An accurate, reliable, portable and noninvasive method to estimate absolute ICP remains an elusive goal. The arteries that perfuse and the vein that drains the orbit are exposed to the ambient ICP while coursing through the cerebrospinal fluid or optic nerve.

Methods: The venous outflow pressure (VOP) of the central retinal vein was measured using occlusion in six intensive care patients treated for acute hydrocephalus or brain hemorrhage and in whom transducers of intracranial pressure could provide standardized continuous output. A novel adaptation of the Balliart ophthalmodynamometer was developed for use. Simultaneously, the central retinal (CRA) and ophthalmic (OA) arterial flow velocities were recorded using color Doppler imaging technique. Repeat noninvasive measurements were performed at various ICPs, (n=22 independently collected observations). Linear regression and correlation testing were performed to evaluate these variables for ICP predictability.

Results: The VOP increased linearly with ICP (r=0.87). The arterial pulsatility indices for both OA and CRA decreased inversely with ICP (r=0.66). An empiric index combining both venous and arterial parameters (VOP/Gosling Pulsatility Index [GPI]) was significantly more correlated with absolute ICP than either parameter alone (r=0.95, p<0.005, ICP=0.29+0.74 [VOP / GPI(OA)]).

Conclusion: The feasibility to estimate ICP from transocular sonographic and dynamometric data is suggested by these preliminary data. Retinal arterial properties are important in modeling the effect of ICP on the venous outflow pressure. Our pilot results serve as a basis on which to conduct a larger prospective and blinded study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samuel M, Burge D, Marchbanks R. Tympanic membrane displacement testing in regular assessment of intracranial pressure in eight children with shunted hydrocephalus. J Neurosurg 1998;88:983–995.

    PubMed  CAS  Google Scholar 

  2. Salman M. Can intracranial pressure be measured non-invasively? Lancet 1997;350:1367.

    Article  PubMed  CAS  Google Scholar 

  3. Lehman R, Krupin T, Podos S. Experimental effect of intracranial hypertension upon intraocular pressure. J Neurosurg 1972;36:60–66.

    PubMed  CAS  Google Scholar 

  4. Hayreh S. Non-invasive measurement of intracranial pressure. Correspondence. Lancet 1998;351:524–525.

    Article  PubMed  CAS  Google Scholar 

  5. Sheeran P, Bland J, Hall G. Intraocular pressure changes and alterations in intracranial pressure. Lancet 2000;355:899.

    Article  PubMed  CAS  Google Scholar 

  6. Klingelhofer J, Conrad B, Benecke R, Sander D, Markakis E. Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol 1988;235:159–162.

    Article  PubMed  CAS  Google Scholar 

  7. Harada K, Hayashi T, Anegawa S, Torigoe R, Nishio N, Moriyama T, et al. Transcranial Doppler ultrasonography in acute intracranial hypertension model-usefulness of pulsatility index. No To Shinkei 1993;45:851–856.

    PubMed  CAS  Google Scholar 

  8. Aaslid R, Lundar T, Lindegaard K, Nornes H. Estimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler readings. Intracranial Pressure VI. In: Miller J, Teasdale G, Rowan J, Galbraith S, Mendelow A (eds.), Springer, Berlin/Heidelberg/New York, 1986, pp. 226–229.

    Google Scholar 

  9. Tranquart F, de Bray J, Berson M, Akoka S, Bodard S, Pourcelot L. Concurrent changes in intracranial pressure, cerebral blood flow velocity, and brain energy metabolism in rabbits with acute intracranial hypertension. Childs Nerv Syst 1994;10:285–292.

    Article  PubMed  CAS  Google Scholar 

  10. Hassler W, Steinmetz H, Gawlowski J. Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg 1988;68:745–751.

    PubMed  CAS  Google Scholar 

  11. Czosnyka M, Matta B, Smielewski P, Kirkpatrick P, Pickard J. Cerebral perfusion pressure in head-injured patients: A non-invasive assessment using transcranial Doppler ultrasonography. J Neurosurg 1998;88:802–808.

    PubMed  CAS  Google Scholar 

  12. Giulioni M, Ursino M, Alvisi C. Correlations among intracranial pulsatility, intracranial hemodynamics, and transcranial Doppler wave form: Literature review and hypothesis for future studies. Neurosurgery 1988;22:807–812.

    Article  PubMed  CAS  Google Scholar 

  13. Homberg A, Jakobsen M, Enevoldsen E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand 1993;87:488–493.

    Article  Google Scholar 

  14. Hayreh S. The central retinal artery. Its role in the blood supply of the optic nerve. Br J Ophthalmol 1963;47:651–663.

    PubMed  CAS  Google Scholar 

  15. Greenfield D, Heggerick P, Hedges T. Color Doppler imaging of normal orbital vasculature. Ophthalmology 1995;102:1598–1605.

    PubMed  CAS  Google Scholar 

  16. Lieb W, Flaharty P, Sergott R. Color Doppler imaging provides accurate assessment of orbital blood flow in occlusive carotid artery disease. Ophthalmology 1991b;98:548–552.

    PubMed  CAS  Google Scholar 

  17. Mittra R, Sergott R, Flaharty P, Lieb W, Savino P, Bosley T, et al. Optic nerve decompression improves hemodynamic parameters in papilledema. Ophthalmology 1993;100:987–997.

    PubMed  CAS  Google Scholar 

  18. Querfurth H, LaGreze W, Hedges T, Heggerick P. Flow velocity and pulsatility of the ocular circulation in chronic intracranial hypertension. Acta Neurol Scand 2002;105:431–440.

    Article  PubMed  CAS  Google Scholar 

  19. Walsh T, Garden J, Gallagher B. Obliteration of retinal venous pulsations during elevation of cerebrospinal fluid pressure. Am J Ophthalmol 1969;67:954–956.

    PubMed  CAS  Google Scholar 

  20. Walsh T, Hoyt W. Papilledema: A sign of increased intracranial pressure. In: Clinical neuro-opthalmology, Chapter 12, vol. 1, 4th edition. (Walsh T, Hoyt W, eds.), Williams and Wilkens, Baltimore/London, 1982.

    Google Scholar 

  21. Levin B. The clinical significance of spontaneous pulsations of the retinal vein. Arch Neurol 1978;35:37–40.

    PubMed  CAS  Google Scholar 

  22. Baurmann M. Uber die Entstehung und klinische Bedeutung des Netzhautvenenpulses. Dtsch Ophthalmol Ges 1925;45:53–59.

    Google Scholar 

  23. Rios-Montenegro E, Anderson D, David N. Intracranial pressure and ocular hemodynamics. Arch Opthalmol 1973;89:52.

    CAS  Google Scholar 

  24. Domzalowa B, Milczarek H. Investigations on the correlation between the pressure of the central retinal vein and of the cerebrospinal fluid. Klin Oczna 1969;39:849–853.

    PubMed  CAS  Google Scholar 

  25. Bailliart P. La pression arterielle dans les branches de l’artere centrale de la retine; nouvelle technique pour la determiner. Ann Ocul (Paris) 1917;154:648–666.

    Google Scholar 

  26. Firsching R, Schutze M, Motschmann M, Behrens-Baumann W. Venous ophthalmodynamometry: A noninvasive method for assessment of intracranial pressure. J Neurosurg 2000;93:33–36.

    Article  PubMed  CAS  Google Scholar 

  27. Bailliart P. Modifications de la tension oculaire sous l’influence de pressions exercees sur le globe. Ann. Ocul (Paris) 1919;156:656–666.

    Google Scholar 

  28. Gosling R, King D. Arterial assessment by Doppler shift ultrasound. Proc R Soc Med 1974;67:447–449.

    PubMed  CAS  Google Scholar 

  29. Pourcelot L. Diagnostic ultrasound for cerebral vascular disease. In: Present and future of diagnostic ultrasound. (Donald I, Levis S, ed.). Kooyker, Rotterdam, Netherlands, 1976.

    Google Scholar 

  30. Dawson B, Trapp R. Basic and clinical biostatistics. Lange-McGraw-Hill, New York, 2001.

    Google Scholar 

  31. Wiebers D, Folger W, Forbes G, Younge B, O’Fallon W. Ophthalmodynamometry and ocular pneumoplethysmography for detection of carotid occlusive disease. Arch Neurol 1982;39:690–691.

    PubMed  CAS  Google Scholar 

  32. Lovasik J, Kothe A, Kergoat H. Comparison of noninvasive methods to derive the mean central retinal artery pressure in man. Optom Vis Sci 1993;70:1005–1011.

    Article  PubMed  CAS  Google Scholar 

  33. Sanborn G, Miller N, McGuire M, Kumar A. Clinical-angiographic correlation of ophthalmodynamometry in patients with suspected carotid artery disease: A prospective study. Stroke 1981;12:770–774.

    PubMed  CAS  Google Scholar 

  34. Holladay J, Arnoult J, Ruiz R. Comparative evaluation of current ophthalmodynamometers. Am J Ophthalmol 1979;87:665–674.

    PubMed  CAS  Google Scholar 

  35. Meyer-Schwickerath R, Kleinwachter T, Firsching R, Papenfuss H. Central retinal venous outflow pressure. Graefes Arch Clin Exp Ophthalmol 1995;233:783–788.

    Article  PubMed  CAS  Google Scholar 

  36. Finke J. Erfahrungen mit der Opthalmographie in Neurologie und Psychiatrie. Neurochirurgia 1967;10:59–76.

    PubMed  CAS  Google Scholar 

  37. Nagai H, Moritake K, Takaya M. Correlation between transcranial Doppler ultrasonography and regional blood flow in experimental intracranial hypertension. Stroke 1997;28:603–607.

    PubMed  CAS  Google Scholar 

  38. Czosnyka M, Richards H, Whitehouse H. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance; an experimental study. J Neurosurg 1996;84:79–84.

    PubMed  CAS  Google Scholar 

  39. Razumovsky A, Czosnyka M, Williams M, Hanley D. Intensive care unit monitoring. In: Transcranial Doppler ultrasonography. (Babikian V, Wechsler L, Tole J, ed.) 2nd ed. Butterworth and Heinemann, Boston, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry W. Querfurth MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Querfurth, H.W., Arms, S.W., Lichy, C.M. et al. Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements. Neurocrit Care 1, 183–194 (2004). https://doi.org/10.1385/NCC:1:2:183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:1:2:183

Key Words

Navigation