Skip to main content
Log in

Intracranial hemorrhage

The role of magnetic resonance imaging

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

The initial and exclusive use of MRI in patients with a stroke syndrome is feasible, probably cost-effective, and even time saving when considering its potential wealth of information. MRI may be the diagnostic tool of choice in patients with all stages of stroke, especially in the hyperacute assessment of ICH, and could be equivalent to CT and CTA in SAH diagnosis.

The authors’ aim is to provide a comprehensive review about the potential role of MRI in evaluating ICH and SAH. Emerging applications, such as the assessment of microbleeds as a risk factor for secondary hemorrhage after thrombolysis and perihemorrhagic ischemic changes as a potential marker for patients likely to benefit from hematoma evacuation, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO Task Force. Stroke—1989. Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO Task Force on Stroke and Other Cerebrovascular Disorders. Stroke 1989;20:1407–1431.

    Google Scholar 

  2. Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Intracerebral hemorrhage versus infarction: stroke severity, risk factors, and prognosis. Ann Neurol 1995;38:45–50.

    Article  PubMed  CAS  Google Scholar 

  3. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracranial hemorrhage. N Engl J Med 2001;344:1450–1460.

    Article  PubMed  CAS  Google Scholar 

  4. Rosenow F, Hojer C, Meyer-Lohmann C, et al. Spontaneous intracerebral hemorrhage. Prognostic factors in 896 cases. Acta Neurol Scand 1997;96:174–182.

    Article  PubMed  CAS  Google Scholar 

  5. Higer HP, Pedrosa P, Schaeben W, Bielke G, Meindl S. Intracranial hemorrhage in MRT. Radiologe 1989;29:297–302.

    PubMed  CAS  Google Scholar 

  6. Jansen O, Heiland S, Schellinger P. Neuroradiological diagnosis in acute ischemic stroke. Value of modern techniques. Nervenarzt 1998;69:465–471.

    Article  PubMed  CAS  Google Scholar 

  7. Hacke W, Stingele R, Steiner T, Schuchardt V, Schwab S. Critical care of acute ischemic stroke. Intens. Care Med. 1995;21:856–862.

    Article  CAS  Google Scholar 

  8. Hayman LA, Taber KH, Ford JJ, Bryan RN. Mechanisms of MR signal alteration by acute intracerebral blood: old concepts and new theories. AJNR Am J Neuroradiol 1991;12:899–907.

    PubMed  CAS  Google Scholar 

  9. Hayman LA, Pagani JJ, Kirkpatrick JB, Hinck VC. Pathophysiology of acute intracerebral and subarachnoid hemorrhage: applications to MR imaging. AJR 1989;153:135–139.

    PubMed  CAS  Google Scholar 

  10. Weingarten K, Zimmerman RD, Cahill PT, Deck MD. Detection of acute intracerebral hemorrhage on MR imaging: ineffectiveness of prolonged interecho interval pulse sequences. AJNR Am J Neuroradiol 1991;12:475–479.

    PubMed  CAS  Google Scholar 

  11. Bradley WG, Jr. MR appearance of hemorrhage in the brain. Radiology 1993;189:15–26.

    PubMed  Google Scholar 

  12. Felber S, Auer A, Wolf C, et al. MRI characteristics of spontaneous intracerebral hemorrhage. Radiologe 1999;39:838–846.

    Article  PubMed  CAS  Google Scholar 

  13. Steinbrich W, Gross-Fengels W, Krestin GP, Heindel W, Schreier G. Intracranial hemorrhages in the magnetic resonance tomogram. Studies on sensitivity, on the development of hematomas and on the determination of the cause of the hemorrhage. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1990;152:534–543.

    PubMed  CAS  Google Scholar 

  14. Gomori JM, Grossman RI, Yu-Ip C, Asakura T. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 1987;11:684–690.

    Article  PubMed  CAS  Google Scholar 

  15. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT. Intracranial hematomas: imaging by high-field MR. Radiology 1985;157:87–93.

    PubMed  CAS  Google Scholar 

  16. Gomori JM, Grossman RI. Mechanisms responsible for the MR appearance and evolution of intracranial hemorrhage. Radiographics 1988;8:427–440.

    PubMed  CAS  Google Scholar 

  17. Grossman RI, Gomori JM, Goldberg HI, et al. MR imaging of hemorrhagic conditions of the head and neck. Radiographics 1988;8:441–454.

    PubMed  CAS  Google Scholar 

  18. Grossman RI, Kemp SS, Ip CY, et al. Importance of oxygenation in the appearance of acute subarachnoid hemorrhage on high field magnetic resonance imaging. Acta Radiol Suppl 1986;369:56–58.

    PubMed  CAS  Google Scholar 

  19. Osborn AG. Intracranial hemorrhage. In: Osborn AG, ed. Diagnostic Neuroradiology. Mosby, Year Book Inc, 1994, pp. 154–198.

    Google Scholar 

  20. Brooks RA, Di Chiro G, Patronas N. MR imaging of cerebral hematomas at different field strengths: theory and applications. J. Comput. Assist. Tomogr. 1989;13:194–206.

    Article  PubMed  CAS  Google Scholar 

  21. Schellinger PD, Jansen O, Fiebach JB, Hacke W, Sartor K. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999;30:765–768.

    PubMed  CAS  Google Scholar 

  22. Zyed A, Hayman LA, Bryan RN. MR imaging of intracerebral blood: diversity in the temporal pattern at 0.5 and 1.0 T. AJNR Am. J. Neuroradiol. 1991;12:469–474.

    PubMed  CAS  Google Scholar 

  23. Blackmore CC, Francis CW, Bryant, R. G., Brenner, B., Marder, V. J. Magnetic resonance imaging of blood and clots in vitro. Invest Radiol 1990;25:1316–1324.

    Article  PubMed  CAS  Google Scholar 

  24. Chin HY, Taber KH, Hayman LA. Temporal changes in red blood cell hydration: application to MRI of hemorrhage. Neuroradiology 1991;33:79–81.

    Article  Google Scholar 

  25. Clark RA, Watanabe AT, Bradley WG, Jr, Roberts JD. Acute hematoma: effects of deoxygenation, hematocrit, and fibrin clot formation and retraction on T2 shortening. Radiology 1990;175:201–206.

    PubMed  CAS  Google Scholar 

  26. Janick PA, Hackney DB, Grossman RI, Asakura T. MR imaging of various oxidation states of intracellular and extracellular hemoglobin. AJNR Am J Neuroradiol 1991;12:891–897.

    PubMed  CAS  Google Scholar 

  27. Kirkpatrick JB, Hayman LA. Pathophysiology of intracranial hemorrhage. Neuroimag Clin N Amer 1992;2:11–23.

    Google Scholar 

  28. Sartor K. Diagnostic and Interventional Neuroradiology—A Multimodality Approach. Stuttgart, NY: Georg Thieme Verlag, 2002,76, 141, 160–169.

    Google Scholar 

  29. Fazekas, F., Kleinert, R., Roob, G., et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am. J. Neuroradiol. 1999;20:637–642.

    PubMed  CAS  Google Scholar 

  30. Hagen, T. Intracerebral hemorrhage in the context of amyloid angiopathy. Radiologe 1999;39:847–854.

    Article  PubMed  CAS  Google Scholar 

  31. Ruiz-Sandoval JL, Cantu C, Barinagarrementeria F. Intracerebral hemorrhage in young people: analysis of risk factors, location, causes, and prognosis. Stroke 1999;30:537–541.

    PubMed  CAS  Google Scholar 

  32. Jansen O, Knauth M, Sartor K. Advances in clinical neuroradiology. Akt. Neurologie. 1999;26:1–7.

    Google Scholar 

  33. Powers WJ, Zivin J. Magnetic resonance imaging in acute stroke: not ready for prime time. Neurology 1998;50:842–843.

    PubMed  CAS  Google Scholar 

  34. Powers WJ. Testing a test: a report card for DWI in acute stroke. Neurology 2000;54:1549–1551.

    PubMed  CAS  Google Scholar 

  35. Mattle HP, Edelman RR, Schroth G, O’Reilly GV. Spontaneous and Traumatic Hemorrhage in Clinical and Magnetic Resonance Imaging. Vol. 1. Philadelphia: W B Saunders, 1996, pp. 652–702.

    Google Scholar 

  36. Gustafsson O, Rossitti S, Ericsson A, Raininko R. MR imaging of experimentally induced intracranial hemorrhage in rabbits during the first 6 hours. Acta Radiol 1999;40:360–368.

    Article  PubMed  CAS  Google Scholar 

  37. Haley EC, Jr., Brott TG, Sheppard GL, et al. Pilot randomized trial of tissue plasminogen activator in acute ischemic stroke. The TPA Bridging Study Group. Stroke 1993;24:1000–1004.

    PubMed  Google Scholar 

  38. Kuker W, Thiex R, Rohde I, Rohde V, Thron A. Experimental acute intracerebral hemorrhage. Value of MR sequences for a safe diagnosis at 1.5 and 0.5 T. Acta. Radiol. 2000;41:544–552.

    Article  PubMed  CAS  Google Scholar 

  39. Linfante I, Llinas RH, Caplan LR, Warach S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 1999;30:2263–2267.

    PubMed  CAS  Google Scholar 

  40. Ebisu T, Tanaka C, Umeda M, et al. Hemorrhagic and nonhemorrhagic stroke: diagnosis with diffusion-weighted and T2-weighted echo-planar MR imaging. Radiology 1997;203:823–828.

    PubMed  CAS  Google Scholar 

  41. Patel, M. R., Edelman, R. R., Warach, S. Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 1996;27:2321–2324.

    PubMed  CAS  Google Scholar 

  42. Rosen BR, Belliveau JW, Chien D. Perfusion imaging by nuclear magnetic resonance. Magnet Reson Q 1989;5:263–281.

    CAS  Google Scholar 

  43. Schellinger PD, Fiebach JB, Gass A, et al. Accuracy of stroke MRI in hyperacute intracerebral hemorrhage <6 hours—a prospective standardized blinded multicenter study. International Stroke Conference, Phoenix, AZ, February 13–15, 2003.

  44. The European Stroke Initiative. Recommendations for Stroke Management. Cerebrovasc Dis 2000;10:1–34.

    Google Scholar 

  45. Kidwell CS, SAver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke 2002;33:95–98.

    Article  PubMed  Google Scholar 

  46. Nighoghossian N, Hermier M, Adeleine P, et al. Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke: a gradient-echo t2*-weighted brain MRI study. Stroke 2002;33:735–742.

    Article  PubMed  CAS  Google Scholar 

  47. Diringer MN. Intracerebral hemorrhage: pathophysiology and management. Crit. Care. Med. 1993;21:1591–1603.

    Article  PubMed  CAS  Google Scholar 

  48. Fernandes HM, Gregson B, Siddique S, Mendelow AD. Surgery in intracerebral hemorrhage: the uncertainty continues. Stroke 2000;31:2511–2516.

    PubMed  CAS  Google Scholar 

  49. Auer LM, Deinsberger W, Niederkorn K, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J. Neurosurg. 1989;70:530–535.

    PubMed  CAS  Google Scholar 

  50. Morgenstern LB, Frankowski RF, Shedden P, Pasteur W, Grotta JC. Surgical treatment for intracerebral hemorrhage (STICH). Stroke 1998;51:1359–1363.

    CAS  Google Scholar 

  51. Bullock R, Brock Utne J, van Dellen J, Blake G. Intracerebral hemorrhage in a primate model: effect on regional cerebral blood flow. Surg. Neurol. 1988;29:101–107.

    Article  PubMed  CAS  Google Scholar 

  52. Deinsberger W, Vogel J, Fuchs C, Auer LM, Kuschinsky W, Boker DK. Fibrinolysis and aspiration of experimental intracerebral hematoma reduces the volume of ischemic brain in rats. Neurol Res 1999;21:517–523.

    PubMed  CAS  Google Scholar 

  53. Mun Bryce S, Kroh FO, White J, Rosenberg GA. Brain lactate and pH dissociation in edema: 1H- and 31P-NMR in collagenase-induced hemorrhage in rats. Am. J. Physiol. 1993;265:R697–702.

    PubMed  CAS  Google Scholar 

  54. Ogawa T, Hatazawa J, Inugami A, et al. Carbon-11-methionine PET evaluation of intracerebral hematoma: distinguishing neoplastic from non-neoplastic hematoma. J Nucl Med 1995;36:2175–2179.

    PubMed  CAS  Google Scholar 

  55. Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab 2001;21:804–810.

    Article  PubMed  CAS  Google Scholar 

  56. Ropper AH, Zervas NT. Cerebral blood flow after experimental basal ganglia hemorrhage. Ann. Neurol. 1982;11:266–271.

    Article  PubMed  CAS  Google Scholar 

  57. Mendelow AD, Bullock R, Nath FP, et al. Experimental intracerebral mass: time-related effects on local cerebral blood flow. In: Miller JD, Teasdale GM, Rowan JO, et al., eds. Intracranial Pressure VI. Berlin: Springer, 1986, pp. 515–520.

    Google Scholar 

  58. Castillo J, Dávalos A, Álvarez-Sabín J, et al. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 2002;58:624–629.

    PubMed  CAS  Google Scholar 

  59. Qureshi AI, Wilson DA, Hanley DF, Traystman RJ. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology 1999;52:266–272.

    PubMed  CAS  Google Scholar 

  60. Videen TO, Dunford-Shore JE, Diringer MN, Powers WJ. Correction for partial volume effects in regional blood flow measurements adjacent to hematomas in humans with intracerebral hemorrhage: implementation and validation. J Comput Assist Tomogr 1999;23:248–256.

    Article  PubMed  CAS  Google Scholar 

  61. Carhuapoma JR, Wang PY, Beauchamp NJ, Keyl PM, Hanley DF, Barker PB. Diffusion-weighted MRI and proton MR spectroscopic imaging in the study of secondary neuronal injury after intracerebral hemorrhage. Stroke 2000;31:726–732.

    PubMed  CAS  Google Scholar 

  62. Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology 2001;57:1611–1617.

    PubMed  CAS  Google Scholar 

  63. Schellinger PD, Fiebach JB, Hoffmann K, et al. Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke 2003;34:1674–1679.

    Article  PubMed  Google Scholar 

  64. Neumann-Haefelin T, Wittsack HJ, Wenserski F, et al. Diffusion-and perfusion weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 1999;30:1591–1597.

    PubMed  CAS  Google Scholar 

  65. Nath FP, Kelly PT, Jenkins A, Mendelow AD, Graham DI, Teasdale GM. Effects of experimental intracerebral hemorrhage on blood flow, capillary permeability, and histochemistry. J Neurosurg 1987;66:555–562.

    PubMed  CAS  Google Scholar 

  66. Sinar EJ, Mendelow AD, Graham DL, Teasdale GM. Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg 1987;66:568–576.

    PubMed  CAS  Google Scholar 

  67. Gebel JM, Jr., Jauch EC, Brott TG, et al. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002;33:2631–2635.

    Article  PubMed  Google Scholar 

  68. Gebel JM, Lauch EC, Brott TG, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002;33:2636–2641.

    Article  PubMed  Google Scholar 

  69. Powers WJ, Zazulia AR, Videen TO, et al. Autoregulation of cerebral blood flow surrounding acute (6 to 22 hours) intracerebral hemorrhage. Neurology 2001;57:18–24.

    Article  PubMed  CAS  Google Scholar 

  70. Hirano T, Read SJ, Abbott DF, et al. No evidence of hypoxic tissue on 18F-fluoromisonidazole PET after intracerebral hemorrhage. Neurology 1999;53:2179–2182.

    PubMed  CAS  Google Scholar 

  71. Chu WJ, Mason GF, Pan JW, et al. Regional cerebral blood flow and magnetic resonance spectroscopic imaging findings in diaschisis from stroke. Stroke 2002;33:1243–1248.

    Article  PubMed  Google Scholar 

  72. Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg 1997;86:272–278.

    Article  PubMed  CAS  Google Scholar 

  73. Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 1997;48:921–926.

    PubMed  CAS  Google Scholar 

  74. van Gijn J, van Dongen KJ. The time course of aneurysmal haemorrhage on computed tomograms. Neuroradiology 1982;23:153–156.

    PubMed  Google Scholar 

  75. Scotti G, Ethier R, Melancon D, Terbrugge K, Tchang S. Computed tomography in the evaluation of intracranial aneurysms and subarachnoid hemorrhage. Radiology 1977;123:85–90.

    PubMed  CAS  Google Scholar 

  76. Chakeres DW, Bryan RN. Acute subarachnoid hemorrhage: in vitro comparison of magnetic resonance and computed tomography. AJNR Am J Neuroradiol 1986;7:223–228.

    PubMed  CAS  Google Scholar 

  77. Melhem ER, Jara H, Eustace S. Fluid-attenuated inversion recovery MR imaging: identification of protein concentration thresholds for CSF hyperintensity. AJR Am J Roentgenol 1997;169:859–862.

    PubMed  CAS  Google Scholar 

  78. Noguchi K, Ogawa T, Seto H, et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology 1997;203:257–262.

    PubMed  CAS  Google Scholar 

  79. Jenkins A, Hadley DM, Teasdale GM, Condon B, Macpherson P, Patterson J. Magnetic resonance imaging of acute subarachnoid hemorrhage. J Neurosurg 1988;68:731–736.

    PubMed  CAS  Google Scholar 

  80. Matsumura K, Matsuda M, Handa J, Todo G. Magnetic resonance imaging with aneurysmal subarachnoid hemorrhage: comparison with computed tomography scan. Surg Neurol 1990;34:71–78.

    Article  PubMed  CAS  Google Scholar 

  81. Noguchi K, Ogawa T, Inugami A, et al. Acute subarachnoid hemorrhage: MR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 1995;196:773–777.

    PubMed  CAS  Google Scholar 

  82. Chrysikopoulos H, Papanikolaou N, Pappas J, et al. Acute subarachnoid haemorrhage: detection with magnetic resonance imaging. Br J Radiol 1996;69:601–609.

    Article  PubMed  CAS  Google Scholar 

  83. Noguchi K, Seto H, Kamisaki Y, Tomizawa G, Toyoshima S, Watanabe N. Comparison of fluid-attenuated inversion-recovery MR imaging with CT in a simulated model of acute subarachnoid hemorrhage. AJNR Am J Neuroradiol 2000;21:923–927.

    PubMed  CAS  Google Scholar 

  84. Ogawa T, Inugami A, Shimosegawa E, et al. Subarachnoid hemorrhage: evaluation with MR imaging. Radiology 1993;186:345–351.

    PubMed  CAS  Google Scholar 

  85. Satoh S, Kadoya S. Magnetic resonance imaging of subarachnoid hemorrhage. Neuroradiology 1988;30:361–366.

    Article  PubMed  CAS  Google Scholar 

  86. Atlas SW. MR imaging is highly sensitive for acute subarachnoid hemorrhage ... not! Radiology 1993;186:319–322; discussion 323.

    PubMed  CAS  Google Scholar 

  87. Atlas SW, Thulborn KR. MR Detection of hyperacute parenchymal hemorrhage of the brain. AJNR Am J Neuroradiol 1998;19:1471–1477.

    PubMed  CAS  Google Scholar 

  88. Wiesmann M, Mayer TE, Medele R, Bruckmann H. Diagnosis of acute subarachnoid hemorrhage at 1.5 Tesla using proton-density weighted FSE and MRI sequences. Radiologe 1999;39:860–865.

    Article  PubMed  CAS  Google Scholar 

  89. Noguchi K, Ogawa T, Inugami A, Toyoshima H, Okudera T, Uemura K. MR of acute subarachnoid hemorrhage: a preliminary report of fluid-attenuated inversion-recovery pulse sequences. AJNR Am J Neuroradiol 1994;15:1940–1943.

    PubMed  CAS  Google Scholar 

  90. Busch E, Beaulieu C, de Crespigny A, Moseley ME. Diffusion MR imaging during acute subarachnoid hemorrhage in rats. Stroke 1998;29:2155–2161.

    PubMed  CAS  Google Scholar 

  91. Jäger HR, Mansmann U, Hausmann O, Partzsch U, Moseley IF, Taylor WJ. MRA versus digital subtraction angiography in acute subarachnoid haemorrhage: a blinded multireader study of prospectively recruited patients. Neuroradiology 2000;42:313–326.

    Article  PubMed  Google Scholar 

  92. Fiebach JB, Schellinger PD, Geletneky K, et al. Stroke MRI in hyperacute subarachnoid hemorrhage in humans. Neuroradiology 2004; in press.

  93. Imaizumi T, Chiba M, Honma T, Niwa J. Detection of hemosiderin deposition by T2*-weighted MRI after subarachnoid hemorrhage. Stroke 2003;34:1693–1698.

    Article  PubMed  CAS  Google Scholar 

  94. Rordorf G, Koroshetz WJ, Copen WA, et al. Diffusion-and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 1999;30:599–605.

    PubMed  CAS  Google Scholar 

  95. Condette-Auliac S, Bracard S, Anxionnat R, et al. Vasospasm after subarachnoid hemorrhage: interest in diffusion-weighted MR imaging. Stroke 2001;32:1818–1824.

    PubMed  CAS  Google Scholar 

  96. Hadeishi H, Suzuki A, Yasui N, Hatazawa J, Shimosegawa E. Diffusion-weighted magnetic resonance imaging in patients with subarachnoid hemorrhage. Neurosurgery 2002;50:741–747.

    Article  PubMed  Google Scholar 

  97. Griffiths PD, Wilkinson ID, Mitchell P, et al. Multimodality MR imaging depiction of hemodynamic changes and cerebral ischemia in subarachnoid hemorrhage. AJNR Am J Neuroradiol 2001;22:1690–1697.

    PubMed  CAS  Google Scholar 

  98. Schellinger PD, Fiebach JB. Stroke MRI and Intracranial Hemorrhage. In: Fiebach JB, Schellinger PD, eds. Stroke MRI. Darmstadt: Steinkopff Verlag, 2003, pp. 35–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Schellinger MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellinger, P.D., Fiebach, J.B. Intracranial hemorrhage. Neurocrit Care 1, 31–45 (2004). https://doi.org/10.1385/NCC:1:1:31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:1:1:31

Key Words

Navigation