Skip to main content
Log in

The augementation hypothesis for improvement of antidepressant therapy

Is pindolol a suitable candidate for testing the ability of 5HT1A receptor antagonists to enhance SSRI efficacy and onset latency?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The development of selective serotonin reuptake inhibitors (SSRIs) provided a major advancement in the treatment of depression. However, these drugs suffer from a variety of drawbacks, most notably a delay in the onset of efficacy. One hypothesis suggests that this delay in efficacy is due to a paradoxical decrease in serotonergic (5-HT) neuronal impulse flow and release, following activation of inhibitory presynaptic 5-HT1A autoreceptors, following acute administration of SSRIs. According to the hypothesis, efficacy is seen only when this impulse flow is restored following desensitization of 5-HT1A autoreceptors and coincident increases in postsynaptic 5-HT levels are achieved. Clinical proof of this principal has been suggested in studies that found a significant augmenting effect when the β-adrenergic/5-HT1A receptor antagonist, pindolol, was coadministered with SSRI treatment. In this article, we review preclinical electrophysiological and microdialysis studies that have examined this desensitization hypothesis. We further discuss clinical studies that utilized pindolol as a test of this hypothesis in depressed patients and examine preclinical studies that challenge the notion that the beneficial effect of pindolol is due to functional antagonism of the 5-HT1A autoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stahl S. M. (1998) Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect. Disord. 51, 215–235.

    Article  PubMed  CAS  Google Scholar 

  2. Hirschfeld R. M. (2000) History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 61, 4–6.

    Article  PubMed  CAS  Google Scholar 

  3. Masand P. S. and Gupta S. (1999) Selective serotonin-reuptake inhibitors: an update. Harv. Rev. Psychiatry 7, 69–84.

    Article  PubMed  CAS  Google Scholar 

  4. Rosen R. C., Lane R. M., and Menza M. (1999) Effects of SSRIs on sexual function: a critical review. J. Clin. Psychopharmacol. 19, 67–85.

    Article  PubMed  CAS  Google Scholar 

  5. Blier P., Pineyro G., el Mansari M., Bergeron R. and de Montigny C. (1998) Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann. NY Acad. Sci. 861, 204–216.

    Article  PubMed  CAS  Google Scholar 

  6. Artigas F., Romero L., de Montigny C., and Blier P. (1996) Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 19, 378–383.

    Article  PubMed  CAS  Google Scholar 

  7. Blier P. and Bergeron R. (1998) The use of pindolol to potentiate antidepressant medication. J. Clin. Psychiatry 59, 16–23.

    PubMed  CAS  Google Scholar 

  8. Chaput Y., de Montigny C., and Blier P. (1986) Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 333, 342–348.

    Article  PubMed  CAS  Google Scholar 

  9. Arborelius L., Nomikos G. G., Grillner P., Hertel P., Hook B. B., Hacksell U., and Svensson T. H. (1995) 5-HT1A receptor antagonists increase the activity of serotonergic cells in the dorsal raphe nucleus in rats treated acutely or chronically with citalopram. Naunyn Schmiedebergs Arch. Pharmacol. 352, 157–165.

    Article  PubMed  CAS  Google Scholar 

  10. Gartside S. E., Umbers V., Hajos M., and Sharp T. (1995) Interaction between a selective 5-HT1A receptor antagonist and an SSRI in vivo: effects on 5-HT cell firing and extracellular 5-HT. Br. J. Pharmacol. 115, 1064–1070.

    PubMed  CAS  Google Scholar 

  11. Hajós M., Gartside S. E., and Sharp T. (1995) Inhibition of median and dorsal raphe neurones following administration of the selective serotonin reuptake inhibitor paroxetine. Naunyn Schmiedebergs Arch. Pharmacol. 351, 624–629.

    Article  PubMed  Google Scholar 

  12. Smith J. E. and Lakoski J. M. (1997) Electrophysiological effects of fluoxetine and duloxetine in the dorsal raphe nucleus and hippocampus. Eur. J. Pharmacol. 323, 69–73.

    Article  PubMed  CAS  Google Scholar 

  13. Bel N. and Artigas F. (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur. J. Pharmacol. 229, 101–103.

    Article  PubMed  CAS  Google Scholar 

  14. Romero L., Bel N., Artigas F., de Montigny C., and Blier P. (1996) Effect of pindolol on the function of pre- and postsynaptic 5-HT1A receptors: in vivo microdialysis and electrophysiological studies in the rat brain. Neuropsychopharmacology 15, 349–360.

    Article  PubMed  CAS  Google Scholar 

  15. Gartside S. E., Umbers V., and Sharp T. (1997) Inhibition of 5-HT cell firing in the DRN by non-selective 5-HT reuptake inhibitors: studies on the role of 5-HT1A autoreceptors and noradrenergic mechanisms. Psychopharmacology 130, 261–268.

    Article  PubMed  CAS  Google Scholar 

  16. Taber M. T., Kinney G. G., Pieschl R. L., Yocca F. D., and Gribkoff V. K. (2000) Differential effects of coadministration of fluoxetine and WAY-100635 on serotonergic neurotransmission in vivo: sensitivity to sequence of injections. Synapse 38, 17–26.

    Article  PubMed  CAS  Google Scholar 

  17. Blier P. and de Montigny C. (1983) Electrophysiological investigations on the effect of repeated zimeldine administration on serotonergic neurotransmission in the rat. J. Neurosci. 3, 1270–1278.

    PubMed  CAS  Google Scholar 

  18. Blier P., de Montigny C., and Tardif D. (1984) Effects of the two antidepressant drugs mianserin and indalpine on the serotonergic system: single-cell studies in the rat. Psychopharmacology 84, 242–249.

    Article  PubMed  CAS  Google Scholar 

  19. de Montigny C. and Blier P. (1984) Effects of antidepressant treatments on 5-HT neurotransmission: electrophysiological and clinical studies, in Frontiers in Biochemical and Pharmacological Research in Depression, (Usdin, E. et al., eds.), Raven, New York, pp. 223–239.

    Google Scholar 

  20. Le Poul E., Laaris N., Doucet E., Laporte A.-M., Hamon M., and Lanfumey L. (1995) Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn Schmiedebergs Arch. Pharmacol. 352, 141–148.

    Article  PubMed  Google Scholar 

  21. Blier P., Chaput Y., and de Montigny C. (1988) Long-term 5-HT reuptake blockade, but not monoamine oxidase inhibition, decreases the function of terminal 5-HT autoreceptors: an electrophysiological study in the rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 337, 246–254.

    Article  PubMed  CAS  Google Scholar 

  22. Chaput Y., de Montigny C., and Blier P. (1991) Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments. An in vivo electrophysiologic study in the rat. Neuropsychopharmacology 5, 219–229.

    PubMed  CAS  Google Scholar 

  23. Hjorth S. and Auerbach S. B. (1994) Lack of 5-HT1A autoreceptor desensitization following chronic citalopram treatment, as determined by in vivo microdialysis. Neuropharmacology 33, 331–334.

    Article  PubMed  CAS  Google Scholar 

  24. Cremers T. I., Spoelstra E. N., de Boer P., Bosker F. J., Mork A., den Boer J. A., et al. (2000) Desensitisation of 5-HT autoreceptors upon pharmacokinetically monitored chronic treatment with citalopram. Eur. J. Pharmacol. 397, 351–357.

    Article  PubMed  CAS  Google Scholar 

  25. Blier P. and Bergeron R. (1995) Effectiveness of pindolol with selected antidepressant drugs in the treatment of major depression. J. Clin. Psychopharmacol. 15, 217–222.

    Article  PubMed  CAS  Google Scholar 

  26. Clifford E. M., Gartside S. E., Umbers V., Cowen P. J., Hajos M., and Sharp T. (1998) Electrophysiological and neurochemical evidence that pindolol has agonist properties at the 5-HT1A autoreceptor in vivo. Br. J. Pharmacol. 124, 206–212.

    Article  PubMed  CAS  Google Scholar 

  27. Sprouse J., Braselton J., and Reynolds L. (1998) 5-HT1A agonist activity of pindolol: reversal of the inhibitory effects on cell firing in the dorsal raphe nucleus but not in the hippocampus by WAY-100,635. Ann. NY Acad. Sci. 861, 274,275.

    Article  PubMed  CAS  Google Scholar 

  28. Sprouse J., Braselton J., and Reynolds L. (2000) 5-HT1A agonist potential of pindolol: electrophysiologic studies in the dorsal raphe nucleus and hippocampus. Biol. Psychiatry 47, 1050–1055.

    Article  PubMed  CAS  Google Scholar 

  29. Fornal C. A., Martin F. J., Metzler C. W., and Jacobs B. L. (1999) Pindolol suppresses serotonergic neuronal activity and does not block the inhibition of serotonergic neurons produced by 8-hydroxy-2-(di-n-propylamino)tetralin in awake cats. J. Pharmacol. Exp. Ther. 291, 229–238.

    PubMed  CAS  Google Scholar 

  30. Fornal C. A., Martin F. J., Metzler C. W., and Jacobs B. L. (1999) Pindolol, a putative 5-hydroxytryptamine(1A) antagonist, does not reverse the inhibition of serotonergic neuronal activity induced by fluoxetine in awake cats: comparison to WAY-100635. J. Pharmacol. Exp. Ther. 291, 220–228.

    PubMed  CAS  Google Scholar 

  31. Fornal C. A., Martín F. J., Mendin A., Metzler C. W., Bjorvatn B., and Jacobs B. L. (1999) Pindolol increases extracellular 5-HT while inhibiting serotonergic neuronal activity. Eur. J. Pharmacol. 377, 187–191.

    Article  PubMed  CAS  Google Scholar 

  32. Haddjeri N., de Montigny C., and Blier P. (1999) Modulation of the firing activity of rat serotonin and noradrenaline neurons by (±)pindolol. Biol. Psychiatry 45, 1163–1169.

    Article  PubMed  CAS  Google Scholar 

  33. Arborelius L., Linner L., Wallsten C., Ahlenius S., and Svensson T. H. (2000) Partial 5-HT1A receptor agonist properties of (−)pindolol in combination with citalopram on serotonergic dorsal raphe cell firing in vivo. Psychopharmacology 151, 77–84.

    Article  PubMed  CAS  Google Scholar 

  34. Kinney G. G., Pieschl R. L., Yocca F. D., and Gribkoff V. K. (1999) An electrophysiological comparison of pindolol-induced changes in dorsal raphe nucleus neuronal activity in vivo and in vitro. Soc. Neurosci. Abst. 25, 715.

    Google Scholar 

  35. Haddjeri N., de Montigny C., and Blier P. (1998) Modulation of the firing activity of rat dorsal raphe 5-HT neurons and locus coeruleus NA neurons by (±)pindolol. Soc. Neurosci. Abst. 24, 1366.

    Google Scholar 

  36. Corradetti R., Larris N., Hanoun N., Laporte A.-M., Le Poul E., Hamon M., and Lanfumey L. (1998) Antagonist properties of (−)-pindolol and WAY 100635 at somatodendritic and postsynaptic 5-HT1A receptors in the rat brain. Br. J. Pharmacol. 123, 449–462.

    Article  PubMed  CAS  Google Scholar 

  37. Newman-Tancredi A., Chaput C., Gavaudan S., Verrièle L., and Millan M. J. (1998) Agonist and antagonist actions of (−)pindolol at recombinant, human serotonin1A (5-HT1A) receptors. Neuropsychopharmacology 18, 395–398.

    Article  PubMed  CAS  Google Scholar 

  38. Sargent P. A., Kjaer K. H., Bench C. J., Rabiner E., Messa C., Meyer J., et al. (2000) Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635. Arch. Gen. Psychiatry 57, 174–180.

    Article  PubMed  CAS  Google Scholar 

  39. Gardier A. M., Malagie I., Trillat A. C., Jacquot C., and Artigas F. (1996) Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam. Clin. Pharmacol. 10, 16–27.

    Article  PubMed  CAS  Google Scholar 

  40. Carboni E., Cadoni C., Tanda G. L., and Di Chiara G. (1989) Calcium-dependent, tetrodotoxin-sensitive stimulation of cortical serotonin release after a tryptophan load. J. Neurochem. 53, 976–978.

    Article  PubMed  CAS  Google Scholar 

  41. Invernizzi R., Belli S., and Samanin R. (1992) Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res. 584, 322–324.

    Article  PubMed  CAS  Google Scholar 

  42. Perry K. W. and Fuller R. W. (1992) Effect of fluoxetine on serotonin and dopamine concentration in microdialysis fluid from rat striatum. Life Sci. 50, 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  43. Hjorth S. (1993) Serotonin 5-HT1A autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo: a microdialysis study. J. Neurochem. 60, 776–779.

    Article  PubMed  CAS  Google Scholar 

  44. Adell A. and Artigas F. (1991) Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo brain microdialysis study. Naunyn Schmiedebergs Arch. Pharmacol. 343, 237–244.

    Article  PubMed  CAS  Google Scholar 

  45. Dawson L. A. and Nguyen H. Q. (2000) The role of 5-HT(1A) and 5-HT(1B/1D) receptors on the modulation of acute fluoxetine-induced changes in extracellular 5-HT: the mechanism of action of (+/−)pindolol. Neuropharmacology 39, 1044–1052.

    Article  PubMed  CAS  Google Scholar 

  46. Tao R., Ma Z. and Auerbach S. B. (2000) Differential effect of local infusion of serotonin reuptake inhibitors in the raphe versus forebrain and the role of depolarization-induced release in increased extracellular serotonin. J. Pharmacol. Exp. Ther. 294, 571–579.

    PubMed  CAS  Google Scholar 

  47. Rutter J. J. and Auerbach S. B. (1993) Acute uptake inhibition increases extracellular serotonin in the rat forebrain. J. Pharmacol. Exp. Ther. 265, 1319–1324.

    PubMed  CAS  Google Scholar 

  48. Rutter J. J., Gundlah C., and Auerbach S. B. (1995) Systemic uptake inhibition decreases serotonin release via somatodendritic autoreceptor activation. Synapse 20, 225–233.

    Article  PubMed  CAS  Google Scholar 

  49. Kreiss D. S. and Lucki I. (1994) Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J. Pharmacol. Exp. Ther. 269, 1268–1279.

    PubMed  CAS  Google Scholar 

  50. Arborelius L., Nomikos G. G., Hertel P., Salmi P., Grillner P., Hook B. B., et al. (1996) The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram. Naunyn Schmiedebergs Arch. Pharmacol. 353, 630–640.

    Article  PubMed  CAS  Google Scholar 

  51. Dreshfield L. J., Wong D. T., Perry K. W., and Engleman E. A. (1996) Enhancement of fluoxetine-dependent increase of extracellular serotonin (5-HT) levels by (−)-pindolol, an antagonist at 5-HT1A receptors. Neurochem. Res. 21, 557–562.

    Article  PubMed  CAS  Google Scholar 

  52. Malagie I., Trillat A. C., Douvier E., Anmella M. C., Dessalles M. C., Jacquot C., and Gardier A. M. (1996) Regional differences in the effect of the combined treatment of WAY 100635 and fluoxetine: an in vivo microdialysis study. Naunyn Schmiedebergs Arch. Pharmacol. 354, 785–790.

    Article  PubMed  CAS  Google Scholar 

  53. Romero L., Hervas I., and Artigas F. (1996) The 5-HT1A antagonist WAY-100635 selectively potentiates the presynaptic effects of serotonergic antidepressants in rat brain. Neurosci. Lett. 219, 123–126.

    Article  PubMed  CAS  Google Scholar 

  54. Rollema H., Clarke T., Sprouse J. S., and Schulz D. W. (1996) Combined administration of a 5-hydroxytryptamine (5-HT)1D antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo. J. Neurochem. 67, 2204–2207.

    Article  PubMed  CAS  Google Scholar 

  55. Gobert A., Rivet J. M., Cistarelli L., and Millan M. J. (1997) Potentiation of the fluoxetine-induced increase in dialysate levels of serotonin (5-HT) in the frontal cortex of freely moving rats by combined blockade of 5-HT1A and 5-HT1B receptors with WAY 100,635 and GR 127,935. J. Neurochem. 68, 1159–1163.

    Article  PubMed  CAS  Google Scholar 

  56. Sharp T., Umbers V., and Gartside S. E. (1997) Effect of a selective 5-HT reuptake inhibitor in combination with 5-HT1A and 5-HT1B receptor antagonists on extracellular 5-HT in rat frontal cortex in vivo. Br. J. Pharmacol. 121, 941–946.

    Article  PubMed  CAS  Google Scholar 

  57. Dawson L. A., Nguyen H. Q., Smith D. I., and Schechter L. E. (2000) Effects of chronic fluoxetine treatment in the presence and absence of (+/−)pindolol: a microdialysis study. Br. J. Pharmacol. 130, 797–804.

    Article  PubMed  CAS  Google Scholar 

  58. Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., et al. (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46, 157–203.

    PubMed  CAS  Google Scholar 

  59. Oksenberg D., Marsters S. A., O’Dowd B. F., Jin H., Havlik S., Peroutka S. J., and Ashkenazi A. (1992) A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature 360, 161–163.

    Article  PubMed  CAS  Google Scholar 

  60. Parker E. M., Grisel D. A., Iben L. G., and Shapiro R. A. (1993) A single amino acid difference accounts for the pharmacological distinctions between the rat and human 5-hydroxytrypamine1B receptors. J. Neurochem. 60, 380–383.

    Article  PubMed  CAS  Google Scholar 

  61. Bel N. and Artigas F. (1993) Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphe nuclei. Synapse 15, 243–245.

    Article  PubMed  CAS  Google Scholar 

  62. Caccia S. (1998) Metabolism of the newer antidepressants. An overview of the pharmacological and pharmacokinetic implications. Clin. Pharmacokinet. 34, 281–302.

    Article  PubMed  CAS  Google Scholar 

  63. Rutter J. J., Gundlah C., and Auerbach S. B. (1994) Increase in extracellular serotonin produced by uptake inhibitors is enhanced after chronic treatment with fluoxetine. Neurosci. Lett. 171, 183–186.

    Article  PubMed  CAS  Google Scholar 

  64. Kreiss D. S. and Lucki I. (1995) Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J. Pharmacol. Exp. Ther. 274, 866–876.

    PubMed  CAS  Google Scholar 

  65. Invernizzi R., Bramante M., and Samanin R. (1996) Role of 5-HT1A receptors in the effects of acute chronic fluoxetine on extracellular serotonin in the frontal cortex. Pharmacol. Biochem. Behav. 54, 143–147.

    Article  PubMed  CAS  Google Scholar 

  66. Hutson P. H., Sarna G. S., O’Connell M. T., and Curzon G. (1989) Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OHDPAT into the nucleus raphe dorsalis. Neurosci. Lett. 100, 276–280.

    Article  PubMed  CAS  Google Scholar 

  67. Sharp T., Bramwell S. R., Clark D., and Grahame Smith D. G. (1989) In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J. Neurochem. 53, 234–240.

    Article  PubMed  CAS  Google Scholar 

  68. Bosker F. J., Klompmakers A. A., and Westenberg H. G. (1995) Effects of single and repeated oral administration of fluvoxamine on extracellular serotonin in the median raphe nucleus and dorsal hippocampus of the rat. Neuropharmacology 34, 501–508.

    Article  PubMed  CAS  Google Scholar 

  69. Bosker F. J., van Esseveldt K. E., Klompmakers A. A., and Westenberg H. G. (1995) Chronic treatment with fluvoxamine by osmotic minipumps fails to induce persistent functional changes in central 5-HT1A and 5-HT1B receptors, as measured by in vivo microdialysis in dorsal hippocampus of conscious rats. Psychopharmacology 117, 358–363.

    Article  PubMed  CAS  Google Scholar 

  70. Invernizzi R., Bramante M. and Samanin R. (1995) Extracellular concentrations of serotonin in the dorsal hippocampus after acute and chronic treatment with citalopram. Brain Res. 696, 62–66.

    Article  PubMed  CAS  Google Scholar 

  71. Gur E., Dremencov E., Lerer B., and Newman M. E. (1999) Venlafaxine: acute and chronic effects on 5-hydroxytryptamine levels in rat brain in vivo. Eur. J. Pharmacol. 372, 17–24.

    Article  PubMed  CAS  Google Scholar 

  72. Invernizzi R., Bramante M., and Samanin R. (1994) Chronic treatment with citalopram facilitates the effect of a challenge dose on cortical serotonin output: role of presynaptic 5-HT1A receptors. Eur. J. Pharmacol. 260, 243–246.

    Article  PubMed  CAS  Google Scholar 

  73. Gundlah C., Hjorth S., and Auerbach S. B. (1997) Autoreceptor antagonists enhance the effect of the reuptake inhibitor citalopram on extracellular 5-HT: this effect persists after repeated citalopram treatment. Neuropharmacology 36, 475–482.

    Article  PubMed  CAS  Google Scholar 

  74. Hjorth S. and Auerbach S. B. (1999) Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor. Brain Res. 835, 224–228.

    Article  PubMed  CAS  Google Scholar 

  75. McAskill R., Mir S., and Taylor D. (1998) Pindolol augmentation of antidepressant therapy. Br. J. Psychiatry 173, 203–208.

    Article  PubMed  CAS  Google Scholar 

  76. Béïque J.-C., Blier P., de Montigny C., and Debonnel G. (2000) Potentiation by (−)pindolol of the activation of postsynaptic 5-HT(1A) receptors induced by venlafaxine. Neuropsychopharmacology 23, 294–306.

    Article  PubMed  Google Scholar 

  77. Schatzberg A. F. and Kraemer H. C. (2000) Use of placebo control groups in evaluating efficacy of treatment of unipolar major depression. Biol. Psychiatry 47, 736–744.

    Article  PubMed  CAS  Google Scholar 

  78. Code of Federal Regulations (1985) 21CFR314.126.

  79. United States Food and Drug Administration (1989) Supplementary advisory: Placebo-controlled and active controlled drug study designs, in The Ethics of Biomedical Research: An International Perspective, (Brody, B., ed.), Oxford University Press, New York, pp. 291, 292.

    Google Scholar 

  80. Berman R. M., Anand A., Cappiello A., Miller H. L., Hu X. S., Oren D. A., and Charney D. S. (1999) The use of pindolol with fluoxetine in the treatment of major depression: final results from a double-blind, placebo-controlled trial. Biol. Psychiatry 45, 1170–1177.

    Article  PubMed  CAS  Google Scholar 

  81. Moreno F. A., Gelenberg A. J., Bachar K., and Delfado P. L. (1997) Pindolol augmentation of treatment-resistant depressed patients. J. Clin. Psychiatry 58, 437–439.

    PubMed  CAS  Google Scholar 

  82. Maes M., Libbrecht I., van Hunsel F., Campens D., and Meltzer H. Y. (1999) Pindolol and mianserin augment the antidepressant activity of fluoxetine in hospitalized major depressed patients, including those with treatment resistance. J. Clin. Psychopharmacol. 19, 177–182.

    Article  PubMed  CAS  Google Scholar 

  83. Zanardi R., Artigas F., Franchini L., Sforzini L., Gasperini M., Smeraldi E., and Perez J. (1997) How long should pindolol be associated with paroxetine to improve the antidepressant response? J. Clin. Psychopharmacol. 17, 446–450.

    Article  PubMed  CAS  Google Scholar 

  84. Zanardi R., Franchini L., Gasperini M., Lucca A., Smeraldo E., and Perez J. (1998) Faster onset of action of fluvoxamine in combination with pindolol in the treatment of delusional depression: a controlled study. J. Clin. Psychopharmacol. 18, 441–446.

    Article  PubMed  CAS  Google Scholar 

  85. Bordet R., Thomas P., and Dupuis B. (1998) Effect of pindolol on onset of action of paroxetine in the treatment of major depression: intermediate analysis of a double-blind, placebo-controlled trial. Am. J. Psychiatry 155, 1346–1351.

    PubMed  CAS  Google Scholar 

  86. Perez V., Gilaberte I., Faries D., Alvarez E., and Artigas F. (1997) Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet 349, 1594–1597.

    Article  PubMed  CAS  Google Scholar 

  87. Tome M. B., Isaac M. T., Harte R., and Holland C. (1997) Paroxetine and pindolol: a randomized trial of serotonergic autoreceptor blockade in the reduction of antidepressant latency. Int. Clin. Psychopharmacol. 12, 81–89.

    Article  PubMed  CAS  Google Scholar 

  88. Perez V., Soler J., Puigdemont D., Alvarez E., and Artigas F. (1999) A double-blind, randomized, placebo-controlled trial of pindolol augmentation in depressive patients resistant to serotonin reuptake inhibitors. Arch. Gen. Psychiatry 56, 375–379.

    Article  PubMed  CAS  Google Scholar 

  89. Maes M., Vandoolaeghe E., and Desnyder R. (1996) Efficacy of treatment with trazodone in combination with pindolol or fluoxetine in major depression. J. Affect. Disord. 41, 201–210.

    Article  PubMed  CAS  Google Scholar 

  90. Cowen P. J., Anderson I. M., and Grahame-Smith D. G. (1990) Neuroendocrine effects of azapirones. J. Clin. Psychopharmacol. 10, 21S-25S.

    PubMed  CAS  Google Scholar 

  91. Rabiner E. A., Gunn R. N., Castro M. E., Sargent P. A., Cowen P. J., Koepp M. J., et al. (2000) Beta-blocker binding to human 5-HT(1A) receptors in vivo and in vitro, implications for antidepressant therapy. Neuropsychopharmacology 23, 285–293.

    Article  PubMed  CAS  Google Scholar 

  92. Artigas F., Perez V., and Alvarez E. (1994) Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch. Gen. Psychiatry 51, 248–251.

    PubMed  CAS  Google Scholar 

  93. Dinan T. G. and Scott L. V. (1996) Does pindolol induce a rapid improvement in depressed patients resistant to serotonin reuptake inhibitors? J. Serotonin Res. 3, 119–121.

    CAS  Google Scholar 

  94. Vinar O., Vinarová E., and Horácek J. (1996) Pindolol accelerates the therapeutic action of selective serotonin reuptake inhibitors (SSRI) in depression. Homeostasis 37, 93–95.

    Google Scholar 

  95. Bakish D., Hooper C. L., Thornton M. D., Wiens A., Miller C. A., and Thibaudeau C. A. (1997) Fast onset: an open study of the treatment of major depressive disorder with nefazodone and pindolol combination therapy. Int. Clin. Psychopharmacol. 12, 91–97.

    Article  PubMed  CAS  Google Scholar 

  96. Blier P., Bergeron R., and de Montigny C. (1997) Selective activation of postsynaptic 5-HT1A receptors induces rapid antidepressant response. Neuropsychopharmacology 16, 333–338.

    Article  PubMed  CAS  Google Scholar 

  97. Cardoni A. A. and Pisetsky M. (1997) Pindolol augmentation of antidepressant response in depressed psychiatric inpatients. Pharmacotherapy 17, 1100.

    Google Scholar 

  98. Erfurth A., Kammerer C., Ackenheil M., and Moller H.-J. (1997) Effect of pindolol in hastening response to serotoninergic antidepressants: an open study in severely depressed female in-patients. Pharmacopsychiatry 30, 164.

    Google Scholar 

  99. Erfurth A., Kammerer C., Grunze H., and Moeller H.-J. (1998) Does pindolol shorten the latency of action of serotoninergic antidepressives? An open study of severely depressed patients during stationary treatment. Nervenarzt 6, S108.

  100. Shiah I.-S., Yatham L. N., Srisurapanont M., Lam R. W., Tam E. M., and Zis A. P. (1999) Pindolol addition accelerates antidepressant effects of ect in depression. Biol. Psychiatry 45, 70S.

    Google Scholar 

  101. Berman R. M., Darnell A. M., Miller H. L., Anand A., and Charney D. S. (1997) Effect of pindolol in hastening response to fluoxetine in the treatment of major depression: a double-blind, placebo-controlled trial. Am. J. Psychiatry 154, 37–43.

    PubMed  CAS  Google Scholar 

  102. Tome M. B. and Isaac M. T. (1997) Cost-benefit and cost-effectiveness analysis of the rapid onset of selective serotonin reuptake inhibitors by augmentation. Int. J. Psychiatry Med. 27, 377–390.

    Article  PubMed  CAS  Google Scholar 

  103. Tome M. B., Cloninger C. R., Watson J. P., and Isaac M. T. (1997) Serotonergic autoreceptor blockade in the reduction of antidepressant latency: personality variables and response to paroxetine and pindolol. J. Affect. Disord. 44, 101–109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene G. Kinney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinney, G.G., Taber, M.T. & Gribkoff, V.K. The augementation hypothesis for improvement of antidepressant therapy. Mol Neurobiol 21, 137–152 (2000). https://doi.org/10.1385/MN:21:3:137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:21:3:137

Index Entries

Navigation