Skip to main content
Log in

Antisense therapy in clinical oncology

Preclinical and clinical experiences

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Nucleic acid molecules have emerged as versatile tools with promising utility as therapeutics for human diseases. The specificity of hybridization of an antisense oligonucleotide (AS ODN) to the target mRNA makes the AS strategy attractive to selectively modulate the expression of genes involved in the pathogenesis of malignant or non-malignant diseases. One AS drug has been approved for local therapy of cytomegalovirus retinitis, and a number of AS ODN are currently tested in clinical trials including ODN that target bcl-2, survivin, and DNA methyltransferase. The clinical studies indicate that AS ODN are well tolerated and may have therapeutic activity. In this overview, we summarize therapeutic concepts, clinical studies, and new promising molecular targets to treat human cancer with AS ODN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buolamwini, J. K. (1999) Novel anticancer drug discovery. Curr. Opin. Chem. Biol. 3, 500–509.

    Article  PubMed  CAS  Google Scholar 

  2. Clark, R. E. (2000) Antisense therapeutics in chronic myeloid leukaemia: the promise, the progress and the problems. Leukemia 14, 347–355.

    Article  PubMed  CAS  Google Scholar 

  3. Baker, B. F. and Monia, B. P. (1999) Novel mechanisms for antisense-mediated regulation of gene expression. Biochim. Biophys. Acta 1489, 3–18.

    PubMed  CAS  Google Scholar 

  4. Crooke, S. T. (1999) Molecular mechanisms of action of antisense drugs. Biochim. Biophys. Acta 1489, 31–44.

    PubMed  CAS  Google Scholar 

  5. Gewirtz, A. M. (2000) Oligonucleotide therapeutics: a step forward. J. Clin. Oncol. 18, 1809–1811.

    PubMed  CAS  Google Scholar 

  6. Koller, E., Gaarde, W. A., and Monia, B. P. (2000) Elucidating cell signaling mechanisms using antisense technology. Trends Pharmacol. Sci. 21, 142–148.

    Article  PubMed  CAS  Google Scholar 

  7. Khuri, F. R. and Kurie, J. M. (2000) Antisense approaches enter the clinic. Clin. Canc. Res. 6, 1607–1610.

    CAS  Google Scholar 

  8. Tamm, I., Dörken, B., and Hartmann, G. (2001) Antisense therapy in oncology: new hope for an old idea? Lancet 358, 489–497.

    Article  PubMed  CAS  Google Scholar 

  9. Waters, J. S., Webb, A., Cunningham, D., et al. (2000) Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-hodgkin's lymphoma. J. Clin. Oncol. 18, 1812–1823.

    PubMed  CAS  Google Scholar 

  10. Brysch, W., Rifai, A., Tischmeyer, W., and Schlingensiepen, K.-H. (1996) Antisense-mediated inhibition of protein synthesis. In Antisense Therapeutics (Agrawal, S., ed.), Humana Press, Totowa, NJ, pp. 159–182.

    Chapter  Google Scholar 

  11. Cotter, F. E. (1999) Antisense therapy of hematologic malignancies. Sem. Hematol. 36, 9–14.

    CAS  Google Scholar 

  12. Levin, A. A. (1999) A review of issues in the pharmacokinetics and toxicology of phophorothioate antisense oligonucleotides. Biochim. Biophys. Acta 1489, 69–84.

    PubMed  CAS  Google Scholar 

  13. de Smet, M. D., Meenken, C. J., and van den Horn, G. J. (1999) Fomivirsen—a phosphorothioate oligo-nucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7, 189–198.

    Article  PubMed  Google Scholar 

  14. Adams, J. M. and Cory, S. (1998) The bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  15. Reed, J. C. (1995) Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr. Opin. Oncol. 7, 541–546.

    PubMed  CAS  Google Scholar 

  16. Genta, Inc. www.genta.com. Date accessed: 2/10/06

  17. Leonard, J. P., Coleman, M., Vose, J., Hainworth, J. D., and Itri, L. M. (2003) Phase II study of oblimersen sodium (G3139) alone and with R-CHOP in mantle cell lymphoma (MCL). Proc. Am. Soc. Clin. Oncol. 22, 566.

    Google Scholar 

  18. O'Brien, S. M., Rai, K. R., and Peterson, B. L. (2003) The addition of rituximab to fludarabine significantly improves progression-free and overall survival in previously untreated chronic lymphocytic leukemia (CLL) patients. Blood 103, 432.

    Google Scholar 

  19. Chanan-Khan, A. (2005) Bcl-2 antisense therapy in B-cell malignancies. Blood Rev. 19, 213–221.

    Article  PubMed  CAS  Google Scholar 

  20. Rai, K., Moore, J. O., and Boyd, T. E. (2001) Phase 3 randomized trial of fludarabine/cyclophosphamide chemotherapy with or without oblimersen sodium (Bcl-2 antisense; Genasense; G3139) for patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood 104, 338.

    Google Scholar 

  21. Gokhale, P. C., Zhang, C., and Newsome, J. T. (2002) Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin. Cancer. Res. 8, 3611–3621.

    PubMed  CAS  Google Scholar 

  22. Morris, M. J., Tong, W. P., Cordon-Cardo, C., et al. (2002) Phase I trial of bcl-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin. Canc. Res. 8, 679–683.

    CAS  Google Scholar 

  23. Cerroni, L., Soyer, H. P., and Kerl, H. (1995) Bcl-2 expression in cutaneous malignant melanoma and benign melanocytic nevi. Am. J. Dermatophatol. 17, 7–11.

    Article  CAS  Google Scholar 

  24. Jansen, B., Wacheck, V., Heere-Reess, E., et al. (2000) Chemosensitization of malignant melanoma by BCL2 antisense therapy. Lancet 356, 1728–1733.

    Article  PubMed  CAS  Google Scholar 

  25. Gleave, M. E. and Monia, B. P. (2005). Antisense therapy for cancer. Nature Rev. Cancer 5, 468–479.

    Article  CAS  Google Scholar 

  26. Chen, H. X., Marshall, J. L., Trocky, N., et al. (2000) A phase I study of bcl-2 antisense G3139 (GENTA) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Proc. Am. Soc. Clin. Oncol. 19, 178a.

    Google Scholar 

  27. de Bono, J. S., Rowinsky, E. K., Kuhn, J., et al. (2001) Phase I pharmacokinetic (pk) and pharmacodynamic (pd) trial of bcl-2 (Genasense) and docetaxel (D) in hormone refractory prostate cancer. Proc. Am. Soc. Clin. Oncol. 20, 474a.

    Google Scholar 

  28. Tolcher, A. W., Kuhn, J., Basler, J., et al. (2000) A phase I, pharmacokinetic and biologic correlative study of G3139 (Bcl-2 antisense oligonucleotide) and Docetaxel in patients with hormone-refractory prostate cancer (HRPC). Proc. Am. Soc. Clin. Oncol. 19, 527a.

    Google Scholar 

  29. Rudin, C., Otterson, G. A., George, C. M., Mauer, A. M., Szeto, L., and Vokes, E. E. (2001) A phase I/II trial of genasense and paclitaxel in chemorefractory small cell lung cancer. Proc. Am. Soc. Clin. Oncol. 20, 1283a.

    Google Scholar 

  30. Chi, K. N., Gleave, M. E., Klasa, R., et al. (2001) A phase I dose-finding study of combined treatment with an antisense bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastastic hormone-refractory prostate cancer. Clin. Canc. Res. 7, 3920–3927.

    CAS  Google Scholar 

  31. Ochoa, L., Kuhn, J., Salinas, R., et al. (2001) A phase I, pharmacokinetic, and biologic correlative study of G3139 and irinotecan (CPT-11) in patients with metastatic colorectal cancer. Proc. Am. Soc. Clin. Oncol. 21, 297a.

    Google Scholar 

  32. Marcucci, G., Bloomfield, C. D., Balcerzak, S. P., et al. (2001) Biologic activity of G3139 (Genasense), a bcl-2 antisense (AS), in refractory (REF) or relapsed (REL) acute leukemia (AL). Proc. Am. Soc. Clin. Oncol. 20, 1149a.

    Google Scholar 

  33. Bollag, K. and McCormick, F. (1991) Regulators and effectors of ras protein. Annu. Rev. Cell Biol. 7, 601–632.

    Article  PubMed  CAS  Google Scholar 

  34. Bos, J. L. (1989). Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.

    PubMed  CAS  Google Scholar 

  35. Eckhardt, S. G., Rizzo, J., Sweeney, K. R., et al. (1999) Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J. Clin. Oncol. 17, 1095–1104.

    PubMed  CAS  Google Scholar 

  36. O'Dwyer, P. J., Stevenson, J. P., Gallagher, M., et al. (1999) c-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligonucle-otide ISIS 5132 (CGP 69846A). Clin. Canc. Res. 5, 3977–3982.

    Google Scholar 

  37. Stevenson, J. P., Yao, K. S., Gallagher, M., et al. (1999). Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J. Clin. Oncol. 17, 2227–2236.

    PubMed  CAS  Google Scholar 

  38. Cunningham, C. C., Holmlund, J. T., Schiller, J. H., et al. (2000) A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. 6, 1626–1631.

    PubMed  CAS  Google Scholar 

  39. Rudin, C. M., Holmlund, J., Fleming, G. F., et al. (2001) Phase I trial of ISIS 5132, an antisense oligo-nucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin. Cancer Res. 7, 1214–1220.

    PubMed  CAS  Google Scholar 

  40. Oza, A. M., Eisenhauer, E., Swenerton, K., et al. (2000) Phase II study of c-raf kinase antisense oligo-nucleotide ISIS 5132 in patients with recurrent ovarian cancer. Proc. Am. Soc. Clin. Oncol. 19, 530a.

    Google Scholar 

  41. Coudert, B., Anthoney, A., Fiedler, W., et al. (2001) Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC). Eur. J. Cancer 37, 2194–2198.

    Article  PubMed  CAS  Google Scholar 

  42. Kasid, U. and Dritschilo, A. (2003) RAF antisense oligonucleotide as a tumor radiosensitizer. Oncogene 22, 5876–5884.

    Article  PubMed  CAS  Google Scholar 

  43. Rudin, C. M., Marshall, J. L., and Huang, C. H. (2004) Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 10, 7244–7251.

    Article  PubMed  CAS  Google Scholar 

  44. http://clinicaltrials.gov. Date accessed: 2/10/06

  45. Cunningham, C. C., Holmlund, J. T., Geary, R. S., et al. (2001) A phase I trial of H-ras antisense oligonucle-otide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 92, 1265–1271.

    Article  PubMed  CAS  Google Scholar 

  46. Saleh, M., Posey, J., Pleasani, L., et al. (2000) A phase II trial of ISIS 2503, an antisense inhibitor of H-ras, as first line therapy for advanced colorectal carcinoma. Proc. Am. Soc. Clin. Oncol. 19, 320a.

    Google Scholar 

  47. Perez, R. P., Smith, J. W. III, Alberts, S. R., et al. (2001) Phase II trial of ISIS 2503, an antisense inhibitor of H-ras, in patients (pts) with advanced pancreatic carcinoma (ca). Proc. Am. Soc. Clin. Oncol. 20, 628a.

    Google Scholar 

  48. Dang, T., Johnson, D. H., Kelly, K., Rizvi, N., Holmlund, J., and Dorr, A. (2001) Multicenter phase II trial of an antisense inhibitor of H-ras (ISIS-2503) in advanced non-small cell lung cancer (NSCLC). Proc. Am. Soc. Clin. Oncol. 20, 1325a.

    Google Scholar 

  49. Luger, S. M., O'Brien, S. G., Ratajczak, J., et al. (2002) Oligonucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99, 1150–1158.

    Article  PubMed  CAS  Google Scholar 

  50. Vidal, L., Leslie, M., and Sludden, J. (2005) A phase I and pharmacodynamic study of a 7 day infusion schedule of the DNMT1 antisense compound MG98. Proc. Am. Soc. Clin. Oncol. 23, 3070.

    Google Scholar 

  51. http://www.methylgene.com. Date accessed: 2/10/06

  52. Siu, L. L., Gelmon, K. A., Moore, M. J., et al. (2000) A phase I and pharmacokinetik (PK) study of the human DNA methyltransferase (Metase) antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Proc. Am. Soc. Clin. Oncol. 19, 250a.

    Google Scholar 

  53. Wang, H., Cai, Q., Zeng, X., Yu, D., Agrawal, S., and Zhang, R. (1999) Antitumor activity and pharmaco-kinetics of a mixed-backbone antisense oligonucleotide targeted to the RIalpha subunit of protein kinase A after oral administration. Proc. Natl. Acad. Sci. USA 96, 13,989–13,994.

    CAS  Google Scholar 

  54. Goel, S., Cho-Chung, Y. S., Nesterova, M. V., et al. (2002) Phase I study monitoring extracellular PKA (ECPKA) levels in a continous intravenous infusion (CIV) with GEM231, a second generation antisense oligonucleotide targeted against PKA RIalpha. Proc. Am. Soc. Clin. Oncol. 21, 1b.

    Google Scholar 

  55. Hau, P., Bogdahn, U., Schulmeyer, F., et al. (2002) TGF-beta2 antisense oligonucleotide AP 12009 administered intratumorally to patients with malignant glioma in a clinical phase I/II dose escalation study: safety and preliminary efficacy data. Proc. Am. Soc. Clin. Oncol. 21, 28a.

    Google Scholar 

  56. Hau, P., Kunst, M., and Pichler, J. (2005) Targeted downregulation of TGF-beta 2 as immunotherapy for high-grade glioma: a phase IIb study. Proc. Am. Soc. Clin. Oncol. 23, 1537.

    Google Scholar 

  57. Schlingensiepen, K., Bischof, A., and Egger, T. (2005) Targeted downregulation of TGF-beta 2 in pancreatic carcinoma: a phase I/II dose escalation study to evaluate the safety and tolerability of the antisense oligo-nucleotide AP 12009. Proc. Am. Soc. Clin. Oncol. 23, 4253.

    Google Scholar 

  58. Deveraux, Q. and Reed, J. C. (1998) IAP family proteins— suppressors of apoptosis. Genes & Dev. 13, 239–252.

    Google Scholar 

  59. Tamm, I., Kornblau, S. M., Segall, H., et al. (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796–1803.

    PubMed  CAS  Google Scholar 

  60. Deveraux, Q., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997) X-linked IAP is a direct inhibitor of cell death proteases. Nature 388, 300–303.

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi, R., Deveraux, Q., Tamm, I., et al. (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273, 7787–7790.

    Article  PubMed  CAS  Google Scholar 

  62. Holcik, M., Yeh, C., Korneluk, R. G., and Chow, T. (2000) Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 19, 4174–4177.

    Article  PubMed  CAS  Google Scholar 

  63. Bilim, V., Kasahara, T., Hara, N., Takahashi, K., and Tomita, Y. (2003) Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistance TCC in vitro. Intl. J. Cancer 103, 29–37.

    Article  CAS  Google Scholar 

  64. Sasaki, H., Sheng, Y., Kotsuji, F., and Tsang, B. (2000) Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res. 60, 5659–5666.

    PubMed  CAS  Google Scholar 

  65. Hu, Y., Cherton-Horvat, G., and Dragowska, V. (2003) Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin. Cancer. Res. 9, 2826–2836.

    PubMed  CAS  Google Scholar 

  66. Schimmer, A. (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice Cancer Res. 64, 7183–7190.

    Article  PubMed  CAS  Google Scholar 

  67. Dierlamm, J., Baens, M., Wlodarska, I., et al. (1999) The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93, 3601–3609

    PubMed  CAS  Google Scholar 

  68. Baens, M., Maes, B., Steyls, A., Geboes, K., De Wolf-Peeters, C., and Marynen, P. (1999) Fusion between the apoptosis inhibitor gene AP12 and a novel 18q gene MLT, rearranged in the t(11;18)(q21;q21), marks half of the gastro-intestinal MALT-type lymphomas without large cell proliferation. Blood 94, 384a.

    Google Scholar 

  69. Ambrosini, G., Adida, C., and Altieri, D. C. (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921.

    Article  PubMed  CAS  Google Scholar 

  70. Tamm, I., Wang, Y., Sausville, E., et al. (1998) IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 58, 5315–5320.

    PubMed  CAS  Google Scholar 

  71. Lu, C. D., Altieri, D. C., and Tanigawa, N. (1998) Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. 58, 1808–1812.

    PubMed  CAS  Google Scholar 

  72. Islam, A., Kageyama, H., Takada, N., et al. (2000) High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19, 617–623.

    Article  PubMed  CAS  Google Scholar 

  73. Kasof, G. M. and Gomes, B. C. (2000) Livin a novel inhibitor-of-apoptosis (IAP) family member. J. Biol. Chem. 158, 431–438.

    Google Scholar 

  74. Kawasaki, H., Altieri, D. C., Lu, C. D., Toyoda, M., Tenjo, T., and Tanigawa, N. (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res. 58, 5071–5074.

    PubMed  CAS  Google Scholar 

  75. Monzo, M., Rosell, R., Felip, E., et al. (1999) A novel anti-apoptosis gene: re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers J. Clin. Oncol. 17, 2100–2104.

    PubMed  CAS  Google Scholar 

  76. Sarela, A. I., Macadam, R. C., Farmery, S. M., Markham, A. F., and Guillou, P. J. (2000) Expression of the antiapoptosis gene, survivin predicts death from recurrent colorectal carcinoma. Gut 46, 645–650.

    Article  PubMed  CAS  Google Scholar 

  77. Swana, H. S., Grossman, D., Anthony, J. N., Weiss, R. M., and Altieri, D. C. (1999) Tumor content of the antipoptosis molecule survivin and recurrence of bladder cancer. N. Engl. J. Med. 341, 452–453.

    Article  PubMed  CAS  Google Scholar 

  78. Tanaka, K., Iwamoto, S., Gon, G., Nohara, T., Iwamoto, M., and Tanigawa, N. (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin. Cancer Res. 6, 127–134.

    PubMed  CAS  Google Scholar 

  79. Adida, C., Berrebi, D., Peuchmaur, M., Reyes-Mugica, M., and Altieri, D. C. (1998) Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351, 882–883.

    Article  PubMed  CAS  Google Scholar 

  80. Li, F., Ackermann, E. J., Bennett, C. F., et al. (1999) Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466.

    Article  PubMed  CAS  Google Scholar 

  81. Suzuki, A., Hayashida, M., Ito, T., et al. (2000) Survivin initiates cell cycle entry by the competitive interaction with Cdk-4/p16INK4a and Cdk2/Cyclin E complex activation. Oncogene 19, 3225–3234.

    Article  PubMed  CAS  Google Scholar 

  82. Li, F., Ambrosini, G., Chu, E. Y., et al. (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584.

    Article  PubMed  CAS  Google Scholar 

  83. Reed, J. C. (1999) Survivin' cell-separation anxiety. Nature Cell Biol. 1, 199–200.

    Article  Google Scholar 

  84. Olie, R. A., Simoes-Wust, A. P., and Baumann, B. (2000) A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res. 60, 2805–2809.

    PubMed  CAS  Google Scholar 

  85. Xia, C., Xu, Z., and Yuan, X. (2002) Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides. Mol. Cancer Ther. 1, 687–694.

    PubMed  CAS  Google Scholar 

  86. Tu, S. P., Jiang, X. H., and Lin, M. C. (2003) Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res. 63, 7724–7732.

    PubMed  CAS  Google Scholar 

  87. Kanwar, J. R., Shen, W. P., Kanwar, R. K., Berg, R. W., and Krissansen, G. W. (2001) Effects of survivin antagonists on growth of established tumors and B7-1 immunogene therapy. J. Natl. Cancer Inst. 93, 1541–1552.

    Article  PubMed  CAS  Google Scholar 

  88. Mesri, M., Wall, N. R., Li, J., Kim, R. W., and Altieri, D. C. (2001) Cancer gene therapy using a survivin mutant adenovirus. J. Clin. Invest. 108, 981–990.

    Article  PubMed  CAS  Google Scholar 

  89. Jones, S. E. and Jomary, C. (2002) Clusterin. Int. J. Biochem. Cell Biol. 34, 427–431.

    Article  PubMed  CAS  Google Scholar 

  90. Miyake, H., Chi, K. N., and Gleave, M. E. (2000) Antisense TRPM-2 of oligodeoxynucleotides chemosensitizes human androgen-independent PC-3 protate cancer cells both in vitro and in vivo. Clin. Cancer Res. 6, 1655–1663.

    PubMed  CAS  Google Scholar 

  91. Zellweger, T., Miyake, H., July, L. V., Akbari, M., Kiyama, S., and Gleave, M. E. (2001) Chemosensitization of human renal cell cancer using antisense oligonucleotides targeting the antiapoptotic gene clusterin. Neoplasia 3, 360–367.

    Article  PubMed  CAS  Google Scholar 

  92. Chi, K. N., Eisenhauer, E., and Fazli, L. (2004) A phase I pharmacokeinetic (PK) and pharmadodynamic (PD) study of OGX-011, a 2′ methoxyethyl phosphorothioate antisense to, clusterin, in patients with prostate cancer prior to radical prostatectomy. Proc. Am. Soc. Clin. Oncol. 22, 30–33.

    Google Scholar 

  93. Chi, K. N., Eisenhauer, E., and Siu, L. (2005) A phase I study of a second generation antisense oligonucleotide to clusterin (OGX-011) in combination with docetaxe. Proc. Am. Soc. Clin. Oncol 23, 3085.

    Google Scholar 

  94. Gleave, M. and Miyake, H. (2005) Use of antisense oligonucleotides targeting the cytoprotective gene, clusterin, to enhance androgen-and chemo-sensitivity in prostate cancer. World J. Urol. 23, 38–46.

    Article  PubMed  CAS  Google Scholar 

  95. Summerton, J. (1999) Morphonlino antisense oligomers: the case for an RNAse H-independent structural type. Biochim. Biophys. Acta 1489, 141–158.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Tamm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamm, I., Wagner, M. Antisense therapy in clinical oncology. Mol Biotechnol 33, 221–238 (2006). https://doi.org/10.1385/MB:33:3:221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:33:3:221

Index Entries

Navigation