Skip to main content
Log in

Flavonoid compounds in maintenance of prostate health and prevention and treatment of cancer

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Compounds based on a flavonoid (di-phenolic) ring structure are emerging as a potentially important new class of pharmaceutical compounds with a broad range of biological activities, most prominent of which are their potential role as anticancer agents. These compounds exert a wide range of upregulating and downregulating effects on signal transduction processes within cells in both plants and animals. The observation that human communities, which consume large quantities of these compounds (legume-based vegetarian diets), have a lower incidence of many degenerative diseases and some cancers has led to the speculation that these compounds, or synthetic analogs, may be of therapeutic value. This article reviews the evidence supporting this hypothesis and provides some examples of attempts to develop new therapeutics based on dietary isoflavones or novel isoflavonoid structures in maintaining prostate health and in cancer treatment and management. One of these compounds, phenoxodiol, is now in human clinical trials and has shown promise in patients with recurrent ovarian cancer where the cancer is refractory or resistant to standard chemotherapy, and in patients with hormone-refractory prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adlercreutz, H., Fotsis, T., Heikkinen, et al. (1982) Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet 2, 1295–1299.

    Article  PubMed  CAS  Google Scholar 

  2. Ekman, P. (1989) BPH epidemiology and risk factors. Prostate Suppl. 2, 23–31.

    Article  PubMed  CAS  Google Scholar 

  3. Dhom, G. (1991) Epidemiology of hormone-depending tumors. In: Endocrine Dependent Tumors (Voigt, K. D. and Knabbe, C., eds.), Raven Press, New York, pp. 1–42.

    Google Scholar 

  4. Mills, P. K., Beeson, W. L., Phillips, R. L., and Fraser, G. E. (1989) Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 64, 598–604.

    Article  PubMed  CAS  Google Scholar 

  5. Dunn, J. E. (1975) Cancer epidemiology in populations of the United States—with emphasis on Hawaii and California—and Japan. Cancer Res. 35, 3240–3245.

    PubMed  CAS  Google Scholar 

  6. Kolonel, L. N., Hankin, J. H., and Nomura, A. M. Y. (1986) Multiethnic studies of diet, nutrition and cancer in Hawaii. In: Nutrition and Cancer (Hayashi, Y., ed.), Japanese Science Society Press, Tokyo, pp. 29–40.

    Google Scholar 

  7. Jarred, R. A., Keikha, M., Dowling, C., et al. (2002) Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-derived dietary isoflavones. Cancer Epidemiol. Biomarkers Prev. 11, 1689–1696.

    PubMed  CAS  Google Scholar 

  8. Setchell, K. D. R. and Adlercreutz, H. (1988) Mammalian lignans and phyto-oestrogens. Recent studies on their formation, metabolism and biological role in health and disease. In: Role of the Gut Flora in Toxicity and Cancer (Rowland, I. R., ed.), Academic Press Limited, San Diego, pp. 315–345.

    Google Scholar 

  9. Kelly, G. E., Nelson, C., Waring, M. A., Joannou, G. E., and Reeder, A. Y. (1993) Metabolites of dietary (soya) isoflavones in human urine. Clin. Chim. Acta 223, 9–22.

    Article  PubMed  CAS  Google Scholar 

  10. Miksicek, R. J. (1994) Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J. Steroid Biochem. Mol. Biol. 49, 153–160.

    Article  PubMed  CAS  Google Scholar 

  11. Collins, B. M., McLachlan, J. A., and Arnold, S. F. (1997) The estrogenic and antiestrogenic activities of phytochemicals with human estrogen receptor expressed in yeast. Steroids 62, 365–372.

    Article  PubMed  CAS  Google Scholar 

  12. Miksicek, R. J. (1993) Commonly occurring plant flavonoids have estrogenic activity. Mol. Pharmacol. 44, 37–43.

    PubMed  CAS  Google Scholar 

  13. Cato, A. C., Miksicek, R., Schutz, G., Arnemann, J., and Beato, M. (1986) The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO J. 5, 2237–2240.

    PubMed  CAS  Google Scholar 

  14. Campbell, D. R. and Kurzer, M. S. (1993) Flavonoid inhibition of aromatase enzyme activity in human preadipocytes. J. Steroid Biochem. Mol. Biol. 46, 381–388.

    Article  PubMed  CAS  Google Scholar 

  15. Morton, M. S., Griffiths, K., and Blacklock, N. (1996) The preventive role of diet in prostatic disease. Brit. J. Urol. 77, 481–493.

    PubMed  CAS  Google Scholar 

  16. Evans, B. A., Griffiths, K., and Morton, M. S. (1995) Inhibition of 5 alpha-reductase in genital skin fibro-blasts and prostate tissue by dietary lignans and isoflavonoids. J. Endocrinol. 147, 295–302.

    Article  PubMed  CAS  Google Scholar 

  17. Bruchovsky, N. and Wilson, J. D. (1968) The conversion of testosterone to 5-alpha-androstan-17-beta-ol-3-one by rat prostate in vivo and in vitro. J. Biol. Chem. 243, 2012–2021.

    PubMed  CAS  Google Scholar 

  18. Anderson, K. M. and Liao, S. (1968) Selective retention of dihydrotestosterone by prostatic nuclei. Nature (Lond.) 219, 277–279.

    Article  CAS  Google Scholar 

  19. Keung, W. M. (1995) Dietary estrogenic isoflavones are potent inhibitors of beta-hydroxysteroid dehydrogenase of P. testosteronii. Biochem. Biophys. Res. Commun. 215, 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  20. Wong, C. K. and Keung, W. M. (1997) Daidzein sulfoconjugates are potent inhibitors of sterol sulfatase (EC 3.1.6.2). Biochem. Biophys. Res. Commun. 233, 579–583.

    Article  PubMed  CAS  Google Scholar 

  21. Sun, X. Y., Plouzek, C. A., Henry, J. P., Wang, T. T., and Phang, J. M. (1998) Increased UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin A in prostate cancer cells. Cancer Res. 58, 2379–2384.

    PubMed  CAS  Google Scholar 

  22. Akiyama, T., Ishida, J., Nakagawa, S., et al. (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592–5595.

    PubMed  CAS  Google Scholar 

  23. Suolinna, E. M., Lang, D. R., and Racker, E. (1974) Quercetin, an artificial regulator of the high aerobic glycolysis of tumor cells. J. Natl. Cancer Inst. 53, 1515–1519.

    PubMed  CAS  Google Scholar 

  24. Shoshan, V. and MacLennan, D. H. (1981) Quercetin interaction with the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 256, 887–892.

    PubMed  CAS  Google Scholar 

  25. Ono, K., Nakane, H., Fukushima, M., Chermann, J. C., and Barre-Sinoussi, F. (1990) Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases [published erratum appears in Eur. J. Biochem. 1991;199:769]. Eur. J. Biochem. 190, 469–476.

    Article  PubMed  CAS  Google Scholar 

  26. Glossmann, H., Presek, P., and Eigenbrodt, E. (1981) Quercetin inhibits tyrosine phosphorylation by the cyclic nucleotide-independent, transforming protein kinase, pp60src. Naunyn Schmiedebergs Arch. Pharmacol. 317, 100–102.

    Article  PubMed  CAS  Google Scholar 

  27. Matter, W. F., Brown, R. F., and Vlahos, C. J. (1992) The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs. Biochem. Biophys. Res. Commun. 186, 624–631.

    Article  PubMed  CAS  Google Scholar 

  28. Prajda, N., Singhal, R. L., Yeh, Y. A., Olah, E., Look, K. Y., and Weber, G. (1995) Linkage of reduction in 1-phosphatidylinositol 4-kinase activity and inositol 1,4,5-trisphosphate concentration in human ovarian carcinoma cells treated with quercetin. Life Sci. 56, 1587–1593.

    Article  PubMed  CAS  Google Scholar 

  29. Rizzo, M. T. and Weber, G. (1994) 1-Phosphatidylinositol 4-kinase: an enzyme linked with proliferation and malignancy. Cancer Res. 54, 2611–2614.

    PubMed  CAS  Google Scholar 

  30. Yoshida, M., Yamamoto, M., and Nikaido, T. (1992) Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle. Cancer Res. 52, 6676–6681.

    PubMed  CAS  Google Scholar 

  31. Scambia, G., Ranelletti, F. O., Panici, P. B., et al. (1990) Inhibitory effect of quercetin on OVCA 433 cells and presence of type II oestrogen binding sites in primary ovarian tumours and cultured cells. Br. J. Cancer 62, 942–946.

    PubMed  CAS  Google Scholar 

  32. Wei, Y. Q., Zhao, X., Kariya, Y., Fukata, H., Teshigawara, K., and Uchida, A. (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res. 54, 4952–4957.

    PubMed  CAS  Google Scholar 

  33. Avila, M. A., Velasco, J. A., Cansado, J., and Notario, V. (1994) Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res. 54, 2424–2428.

    PubMed  CAS  Google Scholar 

  34. Constantinou, A. and Huberman, E. (1995) Genistein as an inducer of tumor cell differentiation: possible mechanisms of action. Proc. Soc. Exp. Biol. Med. 208, 109–115.

    PubMed  CAS  Google Scholar 

  35. Traganos, F., Ardelt, B., Halko, N., Bruno, S., and Darzynkiewicz, Z. (1992) Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT-4 and HL-60 cells. Cancer Res. 52, 6200–6208.

    PubMed  CAS  Google Scholar 

  36. Constantinou, A., Kiguchi, K., and Huberman, E. (1990) Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res. 50, 2618–2624.

    PubMed  CAS  Google Scholar 

  37. Peterson, G. and Barnes, S. (1991) Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem. Biophys. Res. Commun. 179, 661–667.

    Article  PubMed  CAS  Google Scholar 

  38. Peterson, G. and Barnes, S. (1996) Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ. 7, 1345–1351.

    PubMed  CAS  Google Scholar 

  39. Monti, E. and Sinha, B. K. (1994) Antiproliferative effect of genistein and adriamycin against estrogen-dependent and -independent human breast carcinoma cell lines. Anticancer Res. 14, 1221–1226.

    PubMed  CAS  Google Scholar 

  40. Pagliacci, M. C., Smacchia, M., Migliorati, G., Grignani, F., Riccardi, C., and Nicoletti, I. (1994) Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur. J. Cancer 30A, 1675–1682.

    Article  PubMed  CAS  Google Scholar 

  41. Matsukawa, Y., Marui, N., Sakai, T., et al. (1993) Genistein arrests cell cycle progression at G2-M. Cancer Res. 53, 1328–1331.

    PubMed  CAS  Google Scholar 

  42. Yanagihara, K., Ito, A., Toge, T., and Numoto, M. (1993) Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res. 53, 5815–5821.

    PubMed  CAS  Google Scholar 

  43. Peterson, G. and Barnes, S. (1993) Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22, 335–345.

    Article  PubMed  CAS  Google Scholar 

  44. Schweigerer, L., Christeleit, K., Fleischmann, G., et al. (1992) Identification in human urine of a natural growth inhibitor for cells derived from solid paediatric tumours. Eur. J. Clin. Invest. 22, 260–264.

    PubMed  CAS  Google Scholar 

  45. Akiyama, T. and Ogawara, H. (1991) Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol. 201, 362–370.

    Article  PubMed  CAS  Google Scholar 

  46. Constantinou, A., Mehta, R., Runyan, C., Rao, K., Vaughan, A., and Moon, R. (1995) Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J. Natural Products 58, 217–225.

    Article  CAS  Google Scholar 

  47. Watanabe, T., Kondo, K., and Oishi, M. (1991) Induction of in vitro differentiation of mouse erythroleukemia cells by genistein, an inhibitor of tyrosine protein kinases. Cancer Res. 51, 764–768.

    PubMed  CAS  Google Scholar 

  48. Uckun, F. M., Evans, W. E., Forsyth, C. J., et al. (1995) Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267, 886–891.

    Article  PubMed  CAS  Google Scholar 

  49. Fotsis, T., Pepper, M., Adlercreutz, H., Hase, T., Montesano, R., and Schweigerer, L. (1995) Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J. Nutr. 125, 790S-797S.

    PubMed  CAS  Google Scholar 

  50. Bergan, R., Kyle, E., Nguyen, P., Trepel, J., Ingui, C., and Neckers, L. (1996) Genistein-stimulated adherence of prostate cancer cells is associated with the binding of focal adhesion kinase to beta-1-integrin. Clin. Exp. Metastasis 14, 389–398.

    Article  PubMed  CAS  Google Scholar 

  51. Carlson, B. A., Dubay, M. M., Sausville, E. A., Brizuela, L., and Worland, P. J. (1996) Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res. 56, 2973–2978.

    PubMed  CAS  Google Scholar 

  52. Shapiro, G. I., Koestner, D. A., Matranga, C. B., and Rollins, B. J. (1999) Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clin. Cancer Res. 5, 2925–2938.

    PubMed  CAS  Google Scholar 

  53. Drees, M., Dengler, W. A., Roth, T., et al. (1997) Flavopiridol (L86-8275): selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells. Clin. Cancer Res. 3, 273–279.

    PubMed  CAS  Google Scholar 

  54. Axelson, M., Kirk, D. N., Farrant, R. D., Cooley, G., Lawson, A. M., and Setchell, K. D. (1982) The identification of the weak oestrogen equol [7-hydroxy-3-(4′-hydroxyphenyl)chroman] in human urine. Biochem. J. 201, 353–357.

    PubMed  CAS  Google Scholar 

  55. Bannwart, C., Adlercreutz, H., Wahala, K., et al. (1988) Identification of the phyto-oestrogen 3′,7-dihydroxyisoflavan, an isomer of equol, in human urine and cow’s milk. Biomed. Environ. Mass Spectrom. 17, 1–6.

    Article  PubMed  CAS  Google Scholar 

  56. Joannou, G. E., Kelly, G. E., Reeder, A. Y., Waring, M., and Nelson, C. (1995) A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J. Steroid Biochem. Mol. Biol. 54, 167–184.

    Article  PubMed  CAS  Google Scholar 

  57. Bannwart, C., Fotsis, T., Heikkinen, R., and Adlercreutz, H. (1984) Identification of the isoflavonic phytoestrogen daidzein in human urine. Clin. Chim. Acta 136, 165–172.

    Article  PubMed  CAS  Google Scholar 

  58. Kok, J. W., Veldman, R. J., Klappe, K., Koning, H., Filipeanu, C. M., and Muller, M. (2000) Differential expression of sphingolipids in MRP1 overexpressing HT29 cells. Int. J. Cancer 87, 172–178.

    Article  PubMed  CAS  Google Scholar 

  59. Makela, S., Davis, V. L., Tally, W. C., et al. (1994) Dietary estrogens act through estrogen receptor-mediated processes and show no antiestrogenicity in cultured breast cancer cells. Environ. Health Perspect. 102, 572–578.

    CAS  PubMed  Google Scholar 

  60. Wang, C. and Kurzer, M. S. (1997) Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr. Cancer 28, 236–247.

    Article  PubMed  CAS  Google Scholar 

  61. Setchell, K. D., Borriello, S. P., Hulme, P., Kirk, D. N., and Axelson, M. (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am. J. Clin. Nutr. 40, 569–578.

    PubMed  CAS  Google Scholar 

  62. Ingram, D., Sander, K., Kolybaba, M., and Lopez, D. (1998) Case-control study of phyto-oestrogens and breast cancer. Lancet 350, 990–994.

    Article  Google Scholar 

  63. Adlercreutz, H., Goldin, B. R., Gorbach, S. L., et al. (1995) Soybean phytoestrogen intake and cancer risk. J. Nutr. 125, 757S-770S.

    PubMed  CAS  Google Scholar 

  64. Pedersen, G., Brynskov, J., and Saermark, T. (2002) Phenol toxicity and conjugation in human colonic epithelial cells. Scand. J. Gastroenterol. 37, 74–79.

    Article  PubMed  CAS  Google Scholar 

  65. Aguero, M., Facchinetti, M. M., Sheleg, Z., and Senderowicz, A. M. (2005) Phenoxodiol, a novel isoflavone, induces G1 arrest by specific loss in cyclin-dependent kinase 2 activity by p53-independent induction of p21WAF1/CIP1. Cancer Res. 65, 3364–3373.

    PubMed  CAS  Google Scholar 

  66. Kamsteeg, M., Rutherford, T., Sapi, E., et al. (2003) Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresistant ovarian cancer cells. Oncogene 22, 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  67. Hengartner, M. O. (2000) The biochemistry of apoptosis. Nature (Lond.) 407, 770–776.

    Article  CAS  Google Scholar 

  68. Deveraux, Q. L., Leo, E., Stennicke, H. R., Welsh, K., Salvesen, G. S., and Reed, J. C. (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251.

    Article  PubMed  CAS  Google Scholar 

  69. Cardone, M. H., Roy, N., Stennicke, H. R., et al. (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  70. Mabuchi, S., Ohmichi, M., Kimura, A., et al. (2002) Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J. Biol. Chem. 277, 33,490–33,500.

    Article  CAS  Google Scholar 

  71. Igarashi, J., Bernier, S. G., and Michel, T. (2001) Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J. Biol. Chem. 276, 12420–12426.

    Article  PubMed  CAS  Google Scholar 

  72. Pettus, B. J., Chalfant, C. E., and Hannun, Y. A. (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta 1585, 114–125.

    PubMed  CAS  Google Scholar 

  73. Geilen, C. C., Wieder, T., and Orfanos, C. E. (1997) Ceramide signalling: regulatory role in cell proliferation, differentiation and apoptosis in human epidermis. Arch. Dermatol. Res. 289, 559–566.

    Article  PubMed  CAS  Google Scholar 

  74. Senchenkov, A., Litvak, D. A., and Cabot, M. C. (2001) Targeting ceramide metabolism—a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93, 347–357.

    Article  PubMed  CAS  Google Scholar 

  75. Olivera, A., Kohama, T., Edsall, L., et al. (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell Biol. 147, 545–558.

    Article  PubMed  CAS  Google Scholar 

  76. Olivera, A. and Spiegel, S. (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature (Lond.) 365, 557–560.

    Article  CAS  Google Scholar 

  77. Cuvillier, O. (2002) Sphingosine in apoptosis signaling. Biochim. Biophys. Acta 1585, 153–162.

    PubMed  CAS  Google Scholar 

  78. Nava, V. E., Cuvillier, O., Edsall, L. C., et al. (2000) Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res. 60, 4468–4474.

    PubMed  CAS  Google Scholar 

  79. Xia, P., Gamble, J. R., Wang, L., et al. (2000) An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  80. French, K. J., Schrecengost, R. S., Lee, B. D., et al. (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 63, 5962–5969.

    PubMed  CAS  Google Scholar 

  81. Bektas, M., Jolly, P. S., Muller, C., Eberle, J., Spiegel, S., and Geilen, C. C. (2005) Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24, 178–187.

    Article  PubMed  CAS  Google Scholar 

  82. Gamble, J. R., Xia, P., Hahn, C. N., et al. (2005) Phenoxodiol, a derivative of plant flavonoids, shows potent anti-tumour and anti-angiogenic properties. Int. J. Cancer, in preparation.

  83. Bos, J. L. (1989) ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Husband.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D.M., Kelly, G.E. & Husband, A.J. Flavonoid compounds in maintenance of prostate health and prevention and treatment of cancer. Mol Biotechnol 30, 253–270 (2005). https://doi.org/10.1385/MB:30:3:253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:30:3:253

Index Entries

Navigation