Skip to main content
Log in

Microinjection technique used to study functional interaction between p53 and hepatitis B virus X gene in apoptosis

  • Protocol
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microinjection of expression vectors into cultured cells has been utilized to study functional interaction of p53 and the hepatitis B virus HBx gene in apoptosis. This approach allows us to determine protein-protein interactions in primary cultured human cells at a single cell level, including fibroblasts, mammary epithelial cells, renal epithelial cells, and hepatocytes. In principle, this approach can be used to study functional interaction of p53 and any gene that is either pro- or anti-apoptotic. The use of primary cultured human cells minimizes ambiguous results associated with immortalized or tumorigenic cell lines. Moreover, it is an easy and effective way to introduce genes of interests into primary human cells with defined genetic defects, thereby facilitating the delineation of genetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Bisceglie, A. M., Rustgi, V. K., Hoofnagle, J. H., et al. (1988) NIH conference. Hepatocellular carcinoma. Ann. Intern. Med. 108, 390–401.

    PubMed  Google Scholar 

  2. Beasley, R. P., Hwang, L. Y., Lin, C. C., and Chien, C. S. (1981) Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 2, 1129–1133.

    Article  PubMed  CAS  Google Scholar 

  3. Popper, H., Shafritz, D. A., and Hoofnagle, J. H. (1987) Relation of the hepatitis B virus carrier state to hepatocellular carcinoma. Hepatology 7, 764–772.

    Article  PubMed  CAS  Google Scholar 

  4. Beasley, R. P. (1988) Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61, 1942–1956.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, H. S., Kaneko, S., Girones, R., et al. (1993) The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J. Virol. 67, 1218–1226.

    PubMed  CAS  Google Scholar 

  6. Zoulim, F., Saputelli, J., and Seeger, C. (1994) Woodchuck hepatitis virus X protein is required for viral infection in vivo. J. Virol. 68, 2026–2030.

    PubMed  CAS  Google Scholar 

  7. Unsal, H., Yakicier, C., Marcais, C., et al. (1994) Genetic heterogeneity of hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 91, 822–826.

    Article  PubMed  CAS  Google Scholar 

  8. Paterlini, P., Poussin, K., Kew, M., et al. (1995) Selective accumulation of the X transcript of hepatitis B virus in patients negative for hepatitis B surface antigen with hepatocellular carcinoma. Hepatology 21, 313–321.

    PubMed  CAS  Google Scholar 

  9. Kim, C. M., Koike, K., Saito, I., et al. (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351, 317–320.

    Article  PubMed  CAS  Google Scholar 

  10. Shirakata, Y., Kawada, M., Fujiki, Y., et al. (1989) The X gene of hepatitis B virus induced growth stimulation and tumorigenic transformation of mouse NIH3T3 cells. Jpn. J. Cancer Res. 80, 617–621.

    PubMed  CAS  Google Scholar 

  11. Hohne, M., Schaefer, S., Seifer, M., et al. (1990) Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J. 9, 1137–1145.

    PubMed  CAS  Google Scholar 

  12. Slagle, B. L., Lee, T. H., Medina, D., et al. (1996) Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene. Mol. Carcinogen 15, 261–269.

    Article  CAS  Google Scholar 

  13. Terradillos, O., Billet, O., Renard, C. A., et al. (1997) The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene 14, 395–404.

    Article  PubMed  CAS  Google Scholar 

  14. Koike, K., Moriya, K., Yotsuyanagi, H., et al. (1994) Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts. J. Clin. Invest. 94, 44–49.

    Article  PubMed  CAS  Google Scholar 

  15. Benn, J. and Schneider, R. J. (1995) Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc. Natl. Acad. Sci. USA 92, 11,215–11,219.

    Article  CAS  Google Scholar 

  16. Fischer, M., Runkel, L., and Schaller, H. (1995) HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome alpha-subunit. Virus Genes 10, 99–102.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, J., Kwong, J., Sun, E. C., et al. (1996) Proteasome complex as a potential cellular target of hepatitis B virus X protein. J. Virol. 70, 5582–5591.

    PubMed  CAS  Google Scholar 

  18. Sirma, H., Weil, R., Rosmorduc, O., et al. (1998) Cytosol is the prime compartment of hepatitis B virus X protein where it colocalizes with the proteasome. Oncogene 16, 2051–2063.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, T. H., Elledge, S. J., and Butel, J. S. (1995) Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. J. Virol. 69, 1107–1114.

    PubMed  CAS  Google Scholar 

  20. Qadri, I., Conaway, J. W., Conaway, R. C., et al. (1996) Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH. Proc. Natl. Acad. Sci. USA 93, 10,578–10,583.

    Article  CAS  Google Scholar 

  21. Feitelson, M. A., Zhu, M., Duan, L. X., et al. (1993) Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8, 1109–1117.

    Google Scholar 

  22. Wang, X. W., Forrester, K., Yeh, H., et al. (1994) Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 91, 2230–2234.

    Article  PubMed  CAS  Google Scholar 

  23. Takada, S., Tsuchida, N., Kobayashi, M., et al. (1995) Disruption of the function of tumor-suppressor gene p53 by the hepatitis B virus X protein and hepatocarcinogenesis. J. Cancer Res. Clin. Oncol. 121, 593–601.

    Article  PubMed  CAS  Google Scholar 

  24. Truant, R., Antunovic, J., Greenblatt, J., et al. (1995) Direct inhibition of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. J. Virol. 69, 1851–1859.

    PubMed  CAS  Google Scholar 

  25. Siddiqui, A., Jameel, S., and Mapoles, J. (1987) Expression of the hepatitis B virus X gene in mammalian cells. Proc. Natl. Acad. Sci. USA 84, 2513–2517.

    Article  PubMed  CAS  Google Scholar 

  26. Twu, J. S. and Schloemer, R. H. (1987) Transcriptional trans-activating function of hepatitis B virus. J. Virol. 61, 3448–3453.

    PubMed  CAS  Google Scholar 

  27. Spandau, D. F. and Lee, C. H. (1988) trans-activation of viral enhancers by the hepatitis B virus X protein. J. Virol. 62, 427–434.

    PubMed  CAS  Google Scholar 

  28. Seto, E., Yen, T. S., Peterlin, B. M., et al. (1988) Trans-activation of the human immunodeficiency virus long terminal repeat by the hepatitis B virus X protein. Proc. Natl. Acad. Sci. USA 85, 8286–8290.

    Article  PubMed  CAS  Google Scholar 

  29. Twu, J. S., Chu, K., and Robinson, W. S. (1989) Hepatitis B virus X gene activates kappa B-like enhancer sequences in the long terminal repeat of human immunodeficiency virus 1. Proc. Natl. Acad. Sci. USA 86, 5168–5172.

    Article  PubMed  CAS  Google Scholar 

  30. Colgrove, R., Simon, G., and Ganem, D. (1989) Transcriptional activation of homologous and heterologous genes by the hepatitis B virus X gene product in cells permissive for viral replication. J. Virol. 63, 4019–4026.

    PubMed  CAS  Google Scholar 

  31. Twu, J. S. and Robinson, W. S. (1989) Hepatitis B virus X gene can transactivate heterologous viral sequences. Proc. Natl. Acad. Sci. USA 86, 2046–2050.

    Article  PubMed  CAS  Google Scholar 

  32. Levrero, M., Balsano, C., Natoli, G., et al. (1990) Hepatitis B virus X protein transactivates the long terminal repeats of human immunodeficiency virus types 1 and 2. J. Virol. 64, 3082–3086.

    PubMed  CAS  Google Scholar 

  33. Lucito, R. and Schneider, R. J. (1992) Hepatitis B virus X protein activates transaription factor NF-kappa B without a requirement for protein kinase C. J. Virol. 66, 983–991.

    PubMed  CAS  Google Scholar 

  34. Aufiero, B. and Schneider, R. J. (1990) The hepatitis B virus X-gene product trans-activates both RNA polymerase II and III promoters. EMBO J. 9, 497–504.

    PubMed  CAS  Google Scholar 

  35. Cross, J. C., Wen, P., and Rutter, W. J. (1993) Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinases. Proc. Natl. Acad. Sci. USA 90, 8078–8082.

    Article  PubMed  CAS  Google Scholar 

  36. Twu, J. S., Lai, M. Y., Chen, D. S., et al. (1993) Activation of protooncogene c-jun by the X protein of hepatitis B virus. Virology 192, 346–350.

    Article  PubMed  CAS  Google Scholar 

  37. Luber, B., Lauer, U., Weiss, L., et al. (1993) The hepatitis B virus transactivator HBx causes elevation of diacylglycerol and activation of protein kinase C. Res. Virol. 144, 311–321.

    PubMed  CAS  Google Scholar 

  38. Natoli, G., Avantaggiati, M. L., Chirillo, P., et al. (1994) Induction of the DNA-binding activity of c-jun/c-fos heterodimers by the hepatitis B virus transactivator pX. Mol. Cell Biol. 14, 989–998.

    PubMed  CAS  Google Scholar 

  39. Doria, M., Klein, N., Lucito, R., et al. (1995) The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBO J. 14, 4747–4757.

    PubMed  CAS  Google Scholar 

  40. Williams, J. S. and Andrisani, O. M. (1995) The hepatitis B virus X protein targets the basic region-leucine zipper domain of CREB. Proc. Natl. Acad. Sci. USA 92, 3819–3823.

    Article  PubMed  CAS  Google Scholar 

  41. Cheong, J. H., Yi, M., Lin, Y., et al. (1995) Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. EMBO J. 14, 143–150.

    PubMed  CAS  Google Scholar 

  42. Qadri, I., Maguire, H. F., and Siddiqui, A. (1995) Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc. Natl. Acad. Sci. USA 92, 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  43. Kekulë, A. S., Lauer, U., Weiss, L., et al. (1993) Hepatitis B virus transactivator HBx uses a tumour promoter signaling pathway. Nature 361, 742–745.

    Article  PubMed  Google Scholar 

  44. Benn, J. and Schneider, R. J. (1994) Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc. Natl. Acad. Sci. USA 91, 10,350–10,354.

    Article  CAS  Google Scholar 

  45. Wang, H. D., Trivedi, A., and Johnson, D. L. (1997) Hepatitis B virus X protein induces RNA polymerase III-dependent gene transcription and increases cellular TATA-binding protein by activating the Ras signaling pathway. Mol. Cell. Biol. 17, 6838–6846.

    PubMed  CAS  Google Scholar 

  46. Chirillo, P., Pagano, S., Natoli, G., et al. (1997) The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc. Natl. Acad. Sci. USA 94, 8162–8167.

    Article  PubMed  CAS  Google Scholar 

  47. Kim, H., Lee, H., and Yun, Y. (1998) X-gene product of hepatitis B virus induces apoptosis in liver cells. J. Biol. Chem, 273, 381–385.

    Article  PubMed  CAS  Google Scholar 

  48. Su, F. and Schneider, R. J. (1997) Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc. Natl. Acad. Sci. USA 94, 8744–8749.

    Article  PubMed  CAS  Google Scholar 

  49. Lane, D. P. (1992) Cancer. p53, guardian of the genome. Nature. 358, 15–16.

    Article  PubMed  CAS  Google Scholar 

  50. Kastan, M. B., Zhan, Q., El-Deiry, W. S., et al. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia-Telangiectasia. Cell. 71, 587–597.

    Article  PubMed  CAS  Google Scholar 

  51. Lee, S., Elenbase, B., Levine, A., et al. (1995) p53 and Its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell. 81, 1013–1020.

    Article  PubMed  CAS  Google Scholar 

  52. Wang, X. W., Yeh, H., Schaeffer, L., et al. (1995) p53 Modulation of TFIIH-associated nucleotide excision repair activity. Nature Genet. 10, 188–195.

    Article  PubMed  CAS  Google Scholar 

  53. Livingstone, L. R., White, A., Sprouse, J., et al. (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 70, 923–935.

    Article  PubMed  CAS  Google Scholar 

  54. Yin, Y., Tainsky, M. A., Bischoff, F. Z., et al. (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell. 70, 937–948.

    Article  PubMed  CAS  Google Scholar 

  55. Yonish-Rouach, E., Resnitzky, D., Lotem, J., et al. (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347.

    Article  PubMed  CAS  Google Scholar 

  56. Shaw, P., Bovey, R., Tardy, S., et al. (1992) Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89, 4495–4499.

    Article  PubMed  CAS  Google Scholar 

  57. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26, 239–257.

    PubMed  CAS  Google Scholar 

  58. Clarke, A. R., Purdie, C. A., Harrison, D. J., et al. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852.

    Article  PubMed  CAS  Google Scholar 

  59. Lowe, S. W., Schmitt, E. M., Smith, S. W., et al. (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849.

    Article  PubMed  CAS  Google Scholar 

  60. Symonds, H., Krall, L., Remington, L., et al. (1994) p53-Dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703–711.

    Article  PubMed  CAS  Google Scholar 

  61. Graeber, T. G., Osmanian, C., Jacks, T., et al. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91.

    Article  PubMed  CAS  Google Scholar 

  62. Hollstein, M., Sidransky, D., Vogelstein, B., et al. (1991) p53 Mutations in human cancers. Science 253, 49–53.

    Article  PubMed  CAS  Google Scholar 

  63. Levine, A. J., Momand, J., and Finlay, C. A. (1991) The p53 tumour suppressor gene. Nature 351, 453–456.

    Article  PubMed  CAS  Google Scholar 

  64. Greenblatt, M. S., Bennett, W. P., Hollstein, M., et al. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878.

    PubMed  CAS  Google Scholar 

  65. Lee, J. M. and Bernstein, A. (1993) p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci. USA 90, 5742–5746.

    Article  PubMed  CAS  Google Scholar 

  66. Lowe, S. W., Ruley, H. E., Jacks, T., et al. (1993) p53-Dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967.

    Article  PubMed  CAS  Google Scholar 

  67. Lowe, S. W., Bodis, S., McClatchey, A., et al. (1994) p53 Status and the efficacy of cancer therapy in vivo. Science 266, 807–810.

    Article  PubMed  CAS  Google Scholar 

  68. Wang, X. W. and Harris, C. C. (1996) TP53 tumour suppressor gene: clues to molecular carcinogenesis and cancer therapy. Cancer Surveys 28, 169–196.

    PubMed  CAS  Google Scholar 

  69. Ueda, H., Ullrich, S. J., Gangemi, J. D., et al. (1995) Functional inactivation but not structural mutation of p53 causes liver cancer. Nature Genet. 9, 41–47.

    Article  PubMed  CAS  Google Scholar 

  70. Elmore, L. W., Hancock, A. R., Chang, S. F., et al. (1997) Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc. Natl. Acad. Sci. USA 94, 14,707–14,712.

    Article  CAS  Google Scholar 

  71. Lin, Y., Nomura, T., Yamashita, T., et al. (1997) The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Cancer Res. 57, 5137–5142.

    PubMed  CAS  Google Scholar 

  72. Wang, X. W., Vermeulen, W., Coursen, J. D., et al. (1996) The XPB and XPD helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10, 1219–1232.

    Article  PubMed  CAS  Google Scholar 

  73. Wang, X. W., Gibson, M. K., Vermeulen, W., et al. (1995) Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res. 55, 6012–6016.

    PubMed  CAS  Google Scholar 

  74. Takada, S., Kaneniwa, N., Tsuchida, N., et al. (1996) Hepatitis B virus X gene expression is activated by X protein but repressed by p53 tumor suppressor gene product in the transient expression system. Virology 216, 80–89.

    Article  PubMed  CAS  Google Scholar 

  75. Takada, S., Kaneniwa, N., Tsuchida, N., et al. (1997) Cytoplasmic retention of the p53 tumor suppressor gene product is observed in the hepatitis B virus X gene-transfected cells. Oncogene 15, 1895–1901.

    Article  PubMed  CAS  Google Scholar 

  76. Hosono, S., Chou, M. J., Lee, C. S., et al. (1993) Infrequent mutation of p53 gene in hepatitis B virus positive primary hepatocellular carcinomas. Oncogene 8, 491–496.

    PubMed  CAS  Google Scholar 

  77. Henkler, F., Waseem, N., Golding, M. H., et al. (1995) Mutant p53 but not Hepatitis B virus X protein is present in Hepatitis B virus-related human hepatocellular carcinoma. Cancer Res. 55, 6084–6091.

    PubMed  CAS  Google Scholar 

  78. Greenblatt, M. S., Feitelson, M. A., Zhu, M., et al. (1997) Integrity of p53 in hepatitis B x antigen-positive and-negative hepatocellular carcinomas. Cancer Res. 57, 426–432.

    PubMed  CAS  Google Scholar 

  79. Huang, L. C., Clarkin, K. C., and Wahl, G. M. (1996) Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl. Acad. Sci. USA 93, 4827–4832.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.W. Microinjection technique used to study functional interaction between p53 and hepatitis B virus X gene in apoptosis. Mol Biotechnol 18, 169–177 (2001). https://doi.org/10.1385/MB:18:2:169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:18:2:169

Index Entries

Navigation