Skip to main content
Log in

Disruption of the function of tumor-suppressor gene p53 by the hepatitis B virus X protein and hepatocarcinogenesis

  • Original Paper
  • Experimental Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

The X gene of the hepatitis B virus codes for a small basic protein and is able to transactivate viral and cellular genes, although the X protein exhibits no DNA-binding activity. The mechanism of transactivation by X protein has been suggested to be via protein-protein interaction(s). We first demonstrated that X protein had amino acid sequences homologous to the functionally essential domain of Kunitz-type serine protease inhibitors and that those sequences were indispensable for the transactivation function. We demonstrated that X protein exhibited an inhibitor activity against hepatic serine proteases, and subsequently found that the protein activated X gene transcription in HepG2 cells and that the X responsive element was localized in the minimal promoter of the X gene. In contrast, the tumor-suppressor gene p53, but not mutant p53, remarkably reduced transcription from the minimal promoter. This p53 repression on the X gene promoter was cancelled by X gene co-expression, probably indicating that the X protein disrupts the p53 tumor suppressor function in the nucleus. All data suggest that X protein leads to transactivation of cellular oncogenes by preventing an interaction between p53 and cellular transcription factor(s) consisting of the basal transcriptional machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HBV :

hepatitis B virus

HCC :

hepatocellular carcinoma

ORF :

open-reading frame

X-PBP :

x-promoter binding protein

CAT :

chloramphenicol acetyltransferase

PCR :

polymerase chain reaction

GSHV :

ground squirrel hepatitis virus

References

  • Arii M, Takada S, Koike K (1992) Identification of three essential regions of hepatitis B virus X protein for transactivation function. Oncogene 7:397–403

    PubMed  Google Scholar 

  • Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Presinger AC, Jessup JM, Vantuinen P, Ledbetter D, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletion and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    PubMed  Google Scholar 

  • Beasley RP, Hwang LY, Lin CC, Chien CS (1981) Hepatocellular carcinoma and hepatitis B virus. Lancet II:1129–1133

    Google Scholar 

  • Brechot C, Hadchouel M, Scotto J, Degos F, Charnay P, Trepo C, Tiollais P (1981a) Detection of hepatitis B virus DNA in liver and serum: a direct appraisal of the chronic carrier state. Lancet II:765–767

    Google Scholar 

  • Brechot C, Hadchouel M, Scotto J, Fonck M, Potet F, Vyas GN, Tiollais P (1981b) State of hepatitis virus DNA in hepatocyte of patients with hepatitis B surface antigen-positive and-negative liver diseases. Proc Natl Acad Sci USA 78:3906–3910

    PubMed  Google Scholar 

  • Colgrove R, Sinon G, Ganem D (1989) Transcriptional activation of homologous and heterologous genes by the hepatitis B virus X gene product in cells permissive for viral replication. J Virol 63:4019–4026

    PubMed  Google Scholar 

  • Dejian A, Soningo P, Wain-Hobson S, Tiollais P (1984) Specific hepatitis B virus integration in hepatocellular carcinoma DNA through a viral 11-base-pair direct repeat. Proc Natl Acad Sci USA 81:5350–5354

    PubMed  Google Scholar 

  • Dignam JD, Lebovitz RM, Reoder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    PubMed  Google Scholar 

  • Feitelson MA, Zhu M, Duan LX, London WT (1993) Hepatitis B X antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8:1109–1117

    PubMed  Google Scholar 

  • Finlay YT, Hinds PW, Levine AJ (1988) The P53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    Google Scholar 

  • Hohne M, Schaefer S, Scifer M, Feitelson MA, Paul D, Gerlich WH (1990) Malignant transformation of immortalized transgenic hepatocyte after transfection with hepatitis B virus DNA. EMBO J 9:1137–1145

    PubMed  Google Scholar 

  • Jameel S, Siddiqui A, Maguire HF, Rao KV (1990) Hepatitis B virus X protein produced in Escherichia coli is biologically functional. J Virol 64:3963–3966

    PubMed  Google Scholar 

  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711

    PubMed  Google Scholar 

  • Kim CM, Koike K, Saito I, Miyamura T, Jay G (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351:317–320

    PubMed  Google Scholar 

  • Kobayashi M, Koike K (1984) Complete nucleotide sequence of hepatitis B virus DNA of subtypeadr and its conserved gene organization. Gene 30:227–232

    PubMed  Google Scholar 

  • Koike K, Kobayashi M, Yaginuma K, Shirakata Y (1987) Structure and function of integrated HBV DNA. In: Robinson WS, Koike K, Will H (eds) Hepadona viruses. Liss, New York, pp 267–286

    Google Scholar 

  • Koike K, Shirakata Y, Yaginuma K, Arii M, Takada S, Akamura I, Hayashi Y, Kawada M, Kobayashi M (1989) Oncogenic potential of hepatitis B virus. Mol Biol Med 6:151–160

    PubMed  Google Scholar 

  • Lascowski M Jr, Kato I (1990) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626

    Google Scholar 

  • Liu X, Miller CW, Koeffler PH, Berk AJ (1993) The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol Cell Biol 13:3291–3300

    PubMed  Google Scholar 

  • Masuda H, Miller C, Koeffler PH, Battifora H, Cline MJ (1989) Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 84:7716–7719

    Google Scholar 

  • Maxam AM, Gilbert W (1980) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    Google Scholar 

  • Nagaya T, Nakamura T, Tokino T, Tsurimoto T, Imai M, Mayumi T, Kamino K, Yamamura K, Matsubara K (1987) The mode of hepatitis virus DNA integration in chromosome of human hepatocellular carcinoma. Genes Dev 1:773–782

    PubMed  Google Scholar 

  • Nakamura I, Koike K (1992) Identification of a binding protein to the X gene promoter region of hepatitis B virus. Virology 191:533–540

    PubMed  Google Scholar 

  • Patel NU, Jameel S, Isom H, Siddiqui A (1989) Interactions between nuclear factors and hepatitis B virus enhancer. J Virol 63:5293–5301

    PubMed  Google Scholar 

  • Popper H, Roth L, Purcell RH, Tennant BC, Gerin JL (1987) Hepatocarcinogenicity of the woodchuck hepatitis virus. Proc Natl Acad Sci USA 84:866–870

    PubMed  Google Scholar 

  • Prokocimer M, Shaklai M, Beb Bassat H, Wolf D, Goldfinger N, Rotter V (1986) Blood 68:113–118

    PubMed  Google Scholar 

  • Ritter SE, Whittem TM, Quets AT, Schloemer RH (1989) An internal domain of the hepatitis B virus X antigen is necessary for transactivating activity. Virology 182:841–845

    Google Scholar 

  • Runkel L, Fischere M, Schaller H (1993) Two-codon insertion mutations of the HBx define two separate regions necessary for its transactivation function. Virology 197:529–536

    PubMed  Google Scholar 

  • Seto E, Benedict Yen TS, Matija Perterlin B, Ou J-H (1988) Transactivation of the hman immunodeficiency virus long terminal repeat by the hepatitis B virus X protein. Proc Natl Acad Sci USA 85:8286–8290

    PubMed  Google Scholar 

  • Seto E, Mitchell PJ, Yen TSB (1990) Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors. Nature 344:72–74

    PubMed  Google Scholar 

  • Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine A, Shenk T (1992) Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 89:12028–12032

    PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Spandau D, Lee CH (1988) Trans-activation of viral enhancers by the hepatitis B virus X protein. J Virol 62:427–434

    PubMed  Google Scholar 

  • Takada S, Koike K (1990a) Transactivation function of a 3′-truncated gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues. Proc Natl Acad Sci USA 87:5628–5632

    PubMed  Google Scholar 

  • Takada S, Koike K (1990b) X protein of hepatitis B virus resembles a serine protease inhibitor. Jpn J Cancer Res 81:1191–1194

    PubMed  Google Scholar 

  • Takada S, Koike K (1990c) Trans-activation fucction of 3′ truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues. Proc Natl Acad Sci USA 87:5628–5632

    PubMed  Google Scholar 

  • Takada S, Koike K (1994) Three sites of the hepatitis B virus X protein cooperatively interact with cellular proteins. Virology 205:503–510

    PubMed  Google Scholar 

  • Takada S, Gotoh Y, Hayashi S, Yoshida M, Koike K (1990) Structural rearrangement of integrated hepatitis B virus DNA as well as cellular flanking DNA is present in chronically infected hepatitis tissues. J Virol 64:822–828

    PubMed  Google Scholar 

  • Thut CJ, Chen JL, Kiemm R, Tjian R (1995) p53 transcriptional activation mediated by co-activators TAFII40 and TAFII60. Science 267:100–104

    PubMed  Google Scholar 

  • Tiollais P, Pourcell C, Dejean A (1985) The hepatitis B virus. Nature 317:489–495

    PubMed  Google Scholar 

  • Twu J, Schloemer R (1987) Transcriptional trans-activating function of hepatitis B virus. J Virol 61:3448–3453

    PubMed  Google Scholar 

  • Unger T, Shaul Y (1990) The X protein of the hepatitis B virus acts as a transcription factor when targeted to its responsive element. EMBO J 9:1889–1895

    PubMed  Google Scholar 

  • Wang XW, Forrester K, Yeh E, Feitelson MA, Gu J-R (1994) Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci USA 91:2230–2234

    PubMed  Google Scholar 

  • Weintraub H, Hauschka S, Tapscott SJ (1991) The MCK enhancer contains a p53 responsive element. Proc Natl Acad Sci USA 88:4570–4571

    PubMed  Google Scholar 

  • Wollersheim M, Debelka U, Hofschneider PH (1988) A transactivating function encoded in the hepatitis B virus X gene is conserved in the integrated state. Oncogene 3:545–552

    PubMed  Google Scholar 

  • Yaginuma K, Kobayashi M, Yoshida E, Koike K (1985) Hepatitis virus integration in hepatocellular carcinoma DNA: duplication of cellular flanking sequences at the integraton site. Proc Natl Acad Sci USA 82:4458–4462

    PubMed  Google Scholar 

  • Yaginuma K, Kobayashi H, Kobayashi M, Morishima T, Matsuyama K, Koike K (1987) Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis from children. J Virol 61:1808–1813

    PubMed  Google Scholar 

  • Yaginuma K, Nakamura I, Takada S, Koike K (1993) A transcription initiation site for the hepatitis B virus X gene is directed by the promoter-binding protein. J Virol 67:2559–2565

    PubMed  Google Scholar 

  • Zeimer M, Garcia P, Shaul Y, Rutter WJ (1985) Sequence of hepatitis B virus DNA incorporated into the genome of a human hepatoma cell line. J Virol 53:885–892

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work dedicated to Dr. Haruo Sugano on the occasion of his 70th birthday. The material of this paper was essentially presented at the 60th Anniversary Symposium of the Cancer Institute and the Cancer Institute Hospital, Tokyo, held in September 1994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takada, S., Tsuchida, N., Kobayashi, M. et al. Disruption of the function of tumor-suppressor gene p53 by the hepatitis B virus X protein and hepatocarcinogenesis. J Cancer Res Clin Oncol 121, 593–601 (1995). https://doi.org/10.1007/BF01197776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197776

Key words

Navigation