Skip to main content
Log in

Neuroactive steroids

A therapeutic approach to maintain peripheral nerve integrity during neurodegenerative events

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

It is now well known that peripheral nerves are a target for the action of neuroactive steroids. This review summarizes observations obtained so far, indicating that through the interaction with classical and nonclassical steroid receptors, neuroactive steroids (e.g., progesterone, testosterone and their derivatives, estrogens, etc.) are able to influence several parameters of the peripheral nervous system, particularly its glial compartment (i.e., Schwann cells). Interestingly, some of these neuroactive steroids might be considered as promising neuro-protective agents. They are able to counteract neurodegenerative events of rat peripheral nerves occurring after experimental physical trauma, during the aging process, or in hereditary demyelinating diseases. On this basis, the hypothesis that neuroactive steroids might represent a new therapeutic strategy for peripheral neuropathy is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Dahan M. I. and Thalmann R. H. (1996) Progesterone regulates gamma-aminobutyric acid B (GABAB) receptors in the neocortex of female rats. Brain Res. 727, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Al-Dahan M. I., Jalilian Tehrani M. H., and Thalmann R. H. (1994) Regulation of gamma-aminobutyric acid B (GABAB) receptors in the cerebral cortex during the estrous cycle. Brain Res. 640, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Ayhan S., Markal N., Siemionow K., Araneo, B., and Siemionow M. (2003) Effect of subepineurial dehydroepiandrosterone treatment on healing of transected nerves repaired with the epineurial sleeve technique. Microsurgery 23, 49–55.

    Article  PubMed  Google Scholar 

  • Azcoitia I., Leonelli E., Magnaghi V., Veiga S., Garcia-Segura L. M., and Melcangi R. C. (2003). Progesterone and its derivatives dihydroprogesterone and tetrahydroprogesterone reduce myelin fiber morphological abnormalities and myelin fiber loss in the sciatic nerve of aged rats. Neurobiol. Aging 24, 853–860.

    Article  PubMed  CAS  Google Scholar 

  • Bartolami S., Augé, C., Travo C., Ventéo S., Knipper M., and Sans A. (2003) Vestibular Schwann cells are a distinct subpopulation of peripheral glia with specific sensitivity to growth factors and extracellular matrix components. J. Neurobiol. 57, 270–290.

    Article  PubMed  CAS  Google Scholar 

  • Baulieu E. E., Robel P., and Schumacher M. (1999) Contemporary Endocrinology, Humana Press, Totowa, NJ.

    Google Scholar 

  • Benmessahel Y., Troadec J.-D., Cadepond F., Guennoun R., BuchananHales D., Schumacher M., and Groyer G. (2004) Downregulation of steroidogenic acuteregulatory protein (StAR) gene expression by cyclic AMP in cultured Schwann cells. Glia 45, 213–228.

    Article  PubMed  Google Scholar 

  • Bousios S., Karandrea D., Kittas C., and Kitraki E. (2001) Effects of gender and stress on the regulation of steroid receptor coactivator-1 expression in the rat brain and pituitary. J. Steroid Biochem. Mol. Biol. 78, 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Cavarretta I. T. R., Martini L., Motta M., Smith C. L., and Melcangi R. C. (2004) SRC-1 coactivator is involved in the control of the gene expression of myelin protein P0. J. Mol. Neurosci. 24, 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Ceballos D., Cuadras J., Verdù E., and Navarro X. (1999) Morphometric and ultrastructural changes with ageing in mouse peripheral nerve. J. Anal. 195, 563–576.

    Google Scholar 

  • Chan J. R., Phillis II L. J., and Glaser M. (1998) Glucocorticoids and progestins signal the initiation and enhance the rate of myelin formation. Proc. Natl. Acad. Sci. U. S. A. 95. 10459–10464.

    Article  PubMed  CAS  Google Scholar 

  • Chan J. R., Rodriguez-Waitkus P. M., Ng B.-K., Liang P., and Glaser M. (2000) Progesterone synthesized by Schwann cells during myelin formation regulates neuronal gene expression. Mol. Biol. Cell. 11, 2283–2295.

    PubMed  CAS  Google Scholar 

  • Chavez-Delgado M. E., Gomez-Pinedo U., Feria-Velasco A., Huerta-Viera M., Castro-Castaneda S., Lopez-Dellamary Toral F. A., et al. (2005) Ultrastructural analysis of guided nerve regeneration using progesterone-and pregnenolone-loaded chitosan prostheses. J. Biomed. Mater. Res. B Appl. Biomater. 74, 589–600.

    PubMed  CAS  Google Scholar 

  • Ciriza I., Azcoitia I., and Garcia-Segura L. M. (2004) Reduced progesterone metabolites protect rat hippocampal neurones from kainic acid excitotoxicity in vivo. J. Neuroendocrinol. 16, 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Coirini H., Gouézou M., Delespierre B., Liere P., Pianos A., Eychenne B., et al. (2003) Characterization and regulation of the 3β-hydroxysteroid dehydrogenase isomerase enzyme in the rat sciatic nerve. J. Neurochem. 84, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall R. E., and Carlton S. M. (1998) Ultrastructural analysis of NMDA, AMPA, and kainate receptors on unmyelinated and myelinated axons in the periphery. J. Comp. Neurol. 391, 78–86.

    Article  PubMed  CAS  Google Scholar 

  • Dememes D., Lleixa A., and Dechesne C. J. (1995) Cellular and subcellular localization of AMPA-selective glutamate receptors in the mammalian peripheral vestibular system. Brain Res. 671, 83–94.

    Article  PubMed  CAS  Google Scholar 

  • D'Urso D., Brophy P. J., Staugaitus S. M., Gillespie C. S., Frey A. B., Stempak J. G., and Colman D. R. (1990) Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 4, 449–460.

    Article  PubMed  Google Scholar 

  • D'Urso D., Eherhardt P., and Muller H. W. (1999) Peripheral myelin protein 22 and protein zero: a novel association in peripheral nervous system myelin. J. Neurosci. 19, 3396–3403.

    PubMed  Google Scholar 

  • Falkestein E. and Wehling M. (2000) Nongenomically initiated steroid actions. Eur. J. Clin. Invest. 30, 51–54.

    Article  Google Scholar 

  • Ferzaz B., et al. (2002) SSR180575 (7-chloro-N, N, 5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4 5-blindole-1-acetamide), a peripheral benzodiazepine receptorligand, promotes neuronal survival and repair. J. Pharmacol. Exp. Ther. 301, 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  • Frye C. A., Van Keuren K. R., and Erkine M. S. (1996). Behavioral effects of 3alpha-androstanediol. I: modulation of sexual recetivity and promotion of GABA-stimulated chloride flux. Behav. Brain Res. 79, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Garbay B., Heape A. M., Sargueil F., and Cassagne C. (2000) Myelin synthesis in the peripheral nervous system. Prog. Neurobiol. 61, 267–304.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Overjero D., Azcoitia I., DonCarlos L. L., Melcangi R. C., and Garcia-Segura L. M. (2005) Glia-neuron crosstalk in the neuroprotective mechanisms of sex steroid hormones. Brain Res. Rev. 48, 273–286.

    Article  CAS  Google Scholar 

  • Garcia-Segura L. M., Veiga S., Sierra A., Melcangi R. C., and Azcoitia I. (2003) Aromatase: a neuroprotective enzyme. Prog. Neurobiol. 71, 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Giese K. P., Martini R., Lemke G., Soriano P., and Schachner M. (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71, 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Griffin L. D., Gong W., Verot L., and Mellon S. H. (2004) Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat. Med. 10, 704–711.

    Article  PubMed  CAS  Google Scholar 

  • Gudemez E., Ozer K., Cunningham B., Siemionow K., Browne E., and Siemionow M. (2002) Dehyery-droepiandrosterone as an enhancer of functional recovery following crush injury to rat sciatic nerve. Microsurgery 22, 234–241.

    Article  PubMed  Google Scholar 

  • Guennoun R., Schumacher M., Robert F., Delespierre B., Gouezou M., Eychenne B., et al. (1997) Neurosteroids: expression of funtional 3β-hydroxysteroid dehydrogenase by rat sensory neurons and Schwann cells. J. Neurosci. 9, 2236–2247.

    CAS  Google Scholar 

  • Ibanez C., Shields S. A., El-Etr M., Leonelli E., Magnaghi V., Li W.-W., et al. (2003) Steroids and the reversal of age-associated changes in myelination and remyelination. Prog. Neurobiol. 71, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Ishaque A., Roomi M. W., Szymanska I., Kowalski S., and Eylar E. H. (1980) The P0 glycoprotein of peripheral nerve myelin. Can. J. Biochem. 58, 913–921.

    Article  PubMed  CAS  Google Scholar 

  • Islamov R. R., Hendricks W. A., Jones R. J., Lyall G. J., Spanier N. S., and Murashov A. K. (2002) 17beta-estradiol stimulates regeneration of sciatic nerve in female mice. Brain Res. 943, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Islamov R. R., Hendricks W. A., Katwa L. C., McMurray R. J., Pak E. S., Spanier N.S., and Murashov A. K. (2003) Effect of 17β-estradiol on gene expression in lumbar spinal cord following sciatic nerve crush injury in ovarientomized mice. Brain Res. 966, 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Johansson C. S., Stenstrom M., and Hildebrand C. (1996) Target influence on aging of myelinated sensory nerve fibres. Neurobiol. Aging 17, 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Jones K. J., Brown T. J., and Damaser M. (2001) Neuroprotective effects of gonadal steroids on regenerating peripheral motoneurons. Brain Res. Rev. 37, 372–382.

    Article  PubMed  CAS  Google Scholar 

  • Jordan C. L., Price R. H. Jr., and Handa R. J. (2002) Androgen receptor messenger RNA and protein in adult rat sciatic nerve: implications for site of androgen action. J. Neurosci. Res. 69, 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Jung-Testas L., Schumacher M., Robel P., and Baulieu E. E. (1996) Demonstration of progesterone receptors in rat Schwann cells. J. Steroid Biochem. Mol. Biol. 58, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Karchewski L. A., Bloechlinger S., and Woolf C. J. (2004) Axonal injury-dependent induction of the peripheral benzodiazepine receptor in small-diameter adult rat primary sensory neurons. Eur. J. Neurosci. 20, 671–683.

    Article  PubMed  Google Scholar 

  • Koenig H. L., Schumacher M., Ferzaz B., Do Thi A. N., Ressouches A., Guennoun R., et al. (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268, 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn G., Lie A., Wilms S., and Muller H. W. (1993) Coexpression of PMP22 gene with MBP and P0 during de novo myelination and nerve repair. Glia 8, 256–264.

    Article  PubMed  CAS  Google Scholar 

  • Kurihara I., Shibata H., Toshihiko S., Ando T., Kobayashi S., Matsuhiko M., et al. (2002) Expression and regulation of nuclear receptor coactivators in glucocorticoid action. Mol. Cell Endocrinol. 189, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Lacor P., Benavides J., and Ferzaz B. (1996) Enhanced expression of the peripheral benzodiazepine receptor (PBR) and its endogenous ligand octadecaneuropeptide (ODN) in the regenerating adult rat sciatic nerve. Neurosci. Lett. 220, 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Lacor P., Gandolfo P., Tonon M.-C., Brault E., Dalibert I., Schumacher M., Benavides J., and Ferzaz B. (1999) Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration: a role for PBR in neurosteroidogenesis. Brain Res. 815, 70–80.

    Article  PubMed  CAS  Google Scholar 

  • Lai C., Brown M. A., Nave K.-A., Noronha A. B., Quarles R. H., Bloom F. E., et al. (1987) Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal development, are produced by alternative splicing. Proc. Natl. Acad. Sci. U. S. A. 84, 4227–4341.

    Google Scholar 

  • Lumbert J. J., Belelli D., Harney S. C., Peters J. A., and Frenguelli B. G. (2001) Modulation of natitive and recombinant GABAA receptors by endogenous and synthetic neuroactive steroids. Brain Res. Rev. 37, 68–80.

    Article  Google Scholar 

  • Lambert J. J., Belelli D., Peden D. R., Vardy A. W., and Peters J. A. (2003) Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 71, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Lapchak P. A. and Araujo D. M. (2001) Preclinical development of neurosteroids as neuroprotective agents for the treatment of neurodegenerative diseases. Int. Rev. Neurobiol. 46, 379–397.

    Article  PubMed  CAS  Google Scholar 

  • Lemke G. (1986) Molecular biology of the major myelin genes. Trends Neurosci. 9, 266–270.

    Article  CAS  Google Scholar 

  • Lubischer J. L. and Bebinger D. M. (1999) Regulation of terminal Schwann cell number at the adult neuromuscular junction. J. Neurosci. 19, RC46.

    PubMed  CAS  Google Scholar 

  • Magnaghi V., Ballabio M., Cavarretta I. T. R., Froestl W., Lambert J. J., Zucchi I., and Melcangi R. C. (2004a). GABAB receptors in Schwann cells influence proliferation and myelin protein expression. Eur. J. Neurosci. 19, 2641–2649.

    Article  PubMed  Google Scholar 

  • Magnaghi V., Ballabio M., Gonzalez L. C., Leonelli E., Motta M., and Melcangi R. C. (2004b) The synthesis of glycoprotein Po and peripheral myelin protein 22 in sciatic nerve of male rats is modulated by testosterone metabolites. Mol. Brain Res. 126, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Magnaghi V., Cavarretta I., Galbiati M., Martini L., and Melcangi R. C. (2001) Neuroactive steroids and peripheral myelin proteins. Brain Res. Rev. 37, 360–371.

    Article  PubMed  CAS  Google Scholar 

  • Magnaghi V., Cavarretta I., Zucchi I., Susani L., Rupprecht R., Hermann B., et al. (1999) P0 gene expression is modulated by androgens in the sciatic nerve of adult male rats. Mol. Brain Res. 70, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Martini R., Zielasek J., Toyka K. V., Giese K. P., and Schachner M. (1995) Protein zero (P0)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nat. Genet. 11, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Maurice T., Urani A., Phan V. L., and Romieu P. (2001) The interaction between neuroactive steroids and the sigma 1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res. Rev. 37, 116–132.

    Article  PubMed  CAS  Google Scholar 

  • McCullough L. D. and Hurn P. D. (2003) Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol. Metab. 14, 228–235.

    Article  PubMed  CAS  Google Scholar 

  • McMurray R., Islamov R., and Murashov A. K. (2003) Raloxifene analog LY117018 enhances the regeneration of sciatic nerve in ovariectomized female mice. Brain Res. 980, 140–145.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Azcoitia I., Ballabio M., Cavarretta I., Gonzalez L. C., Leonelli E., et al. (2003a) Neubactive steroids influence peripheral myelination: a promising opportunity for preventing or treating age-dependent disfunctions of peripheral nerves. Prog. Neurobiol. 71, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Azcoitia, I., Galbiati M., Magnaghi V., Garcia-Ovejero D., and Garcia-Segura L. M. (2004) Non neuronal cells in the nervous system: sources and targets of neuroactive steroids. Adv. Mol. Cell Biol. 31, 535–559.

    Article  CAS  Google Scholar 

  • Melcangi, R. C., Cavarretta, I. T. R., Ballabio, M., Leonelli E., Schenone A., Azcoitia L., et al. (2005) Peripheral nerves: a target for the action of neuroactive steroids. Brain Res. Rev. 48, 328–338.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Leonelli E., Magnaghi V., Gherardi G., Nobbio L., and Schenone A. (2003b) Mifepristone (RU 38486) influences expression of glycoprotein Po and morphological parameters at the level of rat sciatic nerve: in vivo observations. Exp. Neurol. 184, 930–938.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V. and Martini L. (2000a) Aging in peripheral nerves: regulation of myelin protein genes by steroid hormones. Prog. Neurobiol. 60, 291–308.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., Cavarretta I., Martini L., and Piva F. (1998) Age-induced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neuroscience 85, 569–578.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., Cavarretta I., Zucchi I., Bovolin P., D'Urso D., and Martini L. (1999) Progesterone derivatives are able to influence peripheral myelin protein 22 and Po gene expression: possible mechanisms of action. J. Neurosci. Res. 56, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., Galbiati M., and Martini L. (2001a) Formation and effects of neuroactive steroids in the central and peripheral nervous system. Int. Rev. Neurobiol. 46, 145–176.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., Galbiati M. and Martini L. (2001b). Glial cells: a target for steroid hormones. Prog. Brain Res. 132, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., Galbiati M., Ghelarducci B., Sebastiani L., and Martini L. (2000b) The action of steroid hormones on peripheral myelin proteins: a possible new tool for the rebuilding of myelin. J. Neurocytol. 29, 327–339.

    Article  PubMed  CAS  Google Scholar 

  • Mensah-Nyagan A. G., Do-Rego J. L., Beaujean D., Luu-The V., Pelletier G., and Vaudry H. (1999) Neurosteroids expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol. Rev. 51, 63–81.

    PubMed  CAS  Google Scholar 

  • Merchenthaler I., Dellovade T. L., and Shughrue P. J. (2003) Neuroprotection by estrogen in animal models of global and focal ischemia. Ann. N. Y. Acad. Sci. 1007, 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Misti S., Schomburg L., Yen P., and Chin W. (1998) Expression and hormonal regulation of coativator and corepressor genes. Endocrinology 139, 2493–2500.

    Article  Google Scholar 

  • Morfin R., Young J., Corpéchot C., Egestad B., Sjovall J., and Baulieu E. E. (1992) Neurosteroids: pregenolone in human sciatic nerves. Proc. Natl. Acad. Sci. U. S. A. 89, 6790–6793.

    Article  PubMed  CAS  Google Scholar 

  • Naef R. and Suter U. (1998) Many facets of the peripheral myelin protein PMP22 in myelination and disease. Microsc. Res. Tech. 41, 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Palacios G., Muro A., Verdù E., Pumarola M., and Vela J. M. (2004) Immunohistochemical localization of the sigma (1) receptor in Schwann cells of rat sciatic nerve. Brain Res. 1007, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Pareek S., Suter U., Snipes G. J., Welcher A. A., Shooter E. M., and Murphy R. A. (1993) Detection and processing of peripheral myelin protein PMP22 in cultured Schwann cells. J. Biol. Chem. 268, 10372–10379.

    PubMed  CAS  Google Scholar 

  • Patte-Mensah C., Kappes V., Freund-Mercier M. J., Tsutsui K., and Mensah-Nyagan A. G. (2003) Cellular distribution and bioactivity of the key steroidogenic enzyme, cyutochrome P450side chain cleavage, in sensory neural pathways. J. Neurochem. 86, 1233–1246.

    Article  PubMed  CAS  Google Scholar 

  • Rau S. W., Dubal D. B., Bottner M., Gerhold L. M., and Wise P. M. (2003) Estradiol attenuates programmed cell death after stroke-like injury. J. Neurosci. 23, 11420–11426.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Waitkus P. M., Bottner M., Gerhold L. M., and Wise P. M. (2003) Estradiol attenuates programmed cell death after stroke-like injury. J. Neurosci. 23, 11420–11426.

    Google Scholar 

  • Rodriguez-Waitkus P. M., LaFollette A. J., Ng B. K., Zhu T. S., Conrad H. E., and Glaser M. (2003) Steroid hormone signaling between Schwann cells and neurons regulates the rate of myelin synthesis. Ann. N. Y. Acad. Sci. 1007, 340–348.

    Article  PubMed  CAS  Google Scholar 

  • Romieu P., Martin-Fardon R., Bowen W. D., and Maurice T. (2003) Sigma 1 receptor-related neuroactive steroids modulate cocaine-induced reward. J. Neurosci. 23, 3372–3376.

    Google Scholar 

  • Rupprecht R., di Michele F., Hermann B., Strohle A., Lancel M., Romeo E., and Holsboer F. (2001) Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. Brain Res. Rev. 37, 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M., Guennoun R., Mercier G., Désarnaud F., Lacor P., Bénavides J., et al. (2001) Progesterone synthesis and myelin formation in peripheral nerves. Brain Res. Rev. 37, 343–359.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M., Guennoun R., Robert F., Carelli, C., Gago N., Ghoumari A., et al. (2004) Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Horm. IGF Res. 14, 518–533.

    Article  CAS  Google Scholar 

  • Schumacher M., Weill-Engerer S., Liere P., Robert F., Franklin R. J. M., Garcia-Segura L. M., et al. (2003) Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog. Neurobiol. 71, 3–29.

    Article  PubMed  CAS  Google Scholar 

  • Sereda M. W., Meyer zu Horste G., Suter U., Uzma N., and Nave K.-A. (2003) Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat. Neurosci. 9, 1533–1537.

    Article  CAS  Google Scholar 

  • Shiozawa T., Shih H. C., Miyamoto T., Feng Y. Z., Uchikawa J., Itoh K., and Konishi I. (2003) Cyclic changes in the expression of steroid receptor coactivators and corepressors in the normal human endometrium. J. Clin. Endocrinol. Metab. 88, 871–878.

    Article  PubMed  CAS  Google Scholar 

  • Shy M. E., Arroyo E., Sladky J., Menichella D., Jiang H., Xu W., et al. (1997) Heterozygous Po knockout mice developa peripheral neuropathy that resembles chronic inflammatory demyelinating polyneuropathy (CIDP). J. Neuropathol. Exp. Neurol. 56, 811–821.

    PubMed  CAS  Google Scholar 

  • Snipes G. J. and Suter U. (1995) Molecular anatomy and genetics of myelin proteins in the peripheral nervous system. J. Anat. 186, 483–494.

    PubMed  CAS  Google Scholar 

  • Snipes G. J., Suter U., Welcher A. A., and Shooter E. M. (1992) Characterization of a novel peripheral nervous system myelin protein (PMP22/SR13). J. Cell Biol. 117, 225–238.

    Article  PubMed  CAS  Google Scholar 

  • Suter U. and Scherer S. S. (2003) Disease mechanisms in inherited neurophathies. Nat. Rev. Neurosci. 4, 714–726.

    Article  PubMed  CAS  Google Scholar 

  • Svenningsen A. F. and Kanje M. (1999) Estrogen and progesterone stimulate Schwann cell proliferation in a sex- and age-dependent manner. J. Neurosci. Res. 57, 124–130.

    Article  PubMed  CAS  Google Scholar 

  • Tanzer, L. and Jones K. J. (2004) Neurotherapeutic action of testosterone on hamster facial nerve regeneration: temporal window of effects. Horm. Behav. 45, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Veiga S., Melcangi R. C., DonCarlos L. L., Garcia-Segura L. M., and Azcoitia I. (2004) Sex hormones and brain aging. Exp. Gerontol. 39, 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  • Verdù E., Butí M., and Navarro X. (1996) Functional changes of the peripheral nervous system with aging in the mouse. Neurobiol. Aging 17, 73–77.

    Article  PubMed  Google Scholar 

  • Verdù E., Cevallos D., Vilches J. J., and Navarro X. (2000) Influence of aging on peripheral nerve function and regeneration. J. Peripheral Nerv. Syst. 5, 191–208.

    Article  Google Scholar 

  • Verkhratsky A. and Steinhauser C. (2000) Ion channels in glial cells. Brain Res. Rev. 32, 380–412.

    Article  PubMed  CAS  Google Scholar 

  • Wieser F., Schneeberger C., Hudelist G., Singer C., Kurz C., Nagele F., et al. (2002) Endometrial nuclear receptorco-factors SRC-1 and N-CoR are increased in human endometrium during mestruation. Mol. Hum. Reprod. 8, 644–650.

    Article  PubMed  CAS  Google Scholar 

  • Zielasek J., Martini R., and Toyka K. V. (1996) Functional abnormalities in P0-deficient mice resemble human hereditary neuropathies linked to P0 gene mutations. Muscle Nerve 19, 946–952.

    Article  PubMed  CAS  Google Scholar 

  • Zoidl G., Blass-Kampmann S., D'Urso D., Schmalenbach C., and Muller H. W. (1995) Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: modulation of cell growth. EMBO J 14, 1122–1128.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Melcangi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonelli, E., Ballabio, M., Consoli, A. et al. Neuroactive steroids. J Mol Neurosci 28, 65–76 (2006). https://doi.org/10.1385/JMN:28:1:65

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:1:65

Index Entries

Navigation