Skip to main content
Log in

Phospho-β-catenin accumulation in alzheimer’s disease and in aggresomes attributable to proteasome dysfunction

  • Original Article
  • An Article Related To The 2004 Chemistry Nobel Prize
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Accumulation of cytoplasmic inclusion bodies in many neurodegenerative diseases, including Alzheimer’s disease (AD), might result from dysfunction of the ubiquitin-proteasome system. This system degrades many cellular proteins, including β-catenin, a member of the Wnt signaling pathway, and a presenilin-1-interacting protein. Phosphorylation of β-catenin marks it for ubiquitination and rapid proteasomal degradation. We found phospho-β-catenin accumulated as detergent-insoluble, punctate, cytoplasmic inclusions in hippocampal pyramidal neurons more abundantly in AD than in aged controls. In AD, β-catenin was ubiquitin conjugated, thus suggesting impaired proteasome-dependent degradation. Phospho-β-catenin was partially sequestered within granulovacuolar degeneration bodies but not in lysosomes, indicating sequestration within autophagosomes. Exposure of neuronal cultures to proteasome inhibitors induced formation of detergent-insoluble, phospho-β-catenin-positive cytoplasmic inclusions that coalesced into aggresomes and colocalized with γ-tubulin and vimentin. These aggregates were associated with apoptotic cell death and with activation of caspase-3, c-Jun-N-terminal kinases, and c-Jun. These findings suggest that phospho-β-catenin accumulation in AD might result from impaired proteasome function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberle H., Bauer A., Stappert J., Kispert A., and Kemler R. (1997) β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804.

    Article  PubMed  CAS  Google Scholar 

  • Amit S., Hatzubai A., Birman Y., Andersen J., Ben-Shushan E., Mann M., et al. (2002) Axin-mediated CKI phosphorylation of β-catenin at Ser45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076.

    Article  PubMed  CAS  Google Scholar 

  • Augustinack J., Schneider A., Mandelkow E., and Hyman B. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. (Berl.) 103, 26–35.

    Article  CAS  Google Scholar 

  • Bence N., Sampat R., and Kopito R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Braak H. and Braak E. (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. (Berl.) 82, 239–259.

    Article  CAS  Google Scholar 

  • Carrard G., Bulteau A. L., Petropoulos I., and Friguet B. (2002) Impairment of proteasome structure and function in aging. Int. J. Biochem. Cell Biol. 34, 1461–1474.

    Article  PubMed  CAS  Google Scholar 

  • Cashman N., Durham H., Blusztajn J., Oda K., Tabira T., Shaw I., et al. (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev. Dyn. 194, 209–21.

    PubMed  CAS  Google Scholar 

  • Chai Y., Koppenhafer S., Shoesmith S., Perez M., and Paulson H. (1999) Evidence of proteasome involvement in polyglutamine disease: localization to nuclear inclusionsin SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Chung K., Dawson V., and Dawson T. (2001) The role of the ubiqutin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci. 24(11), S7-S14.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A., Orian A., and Schwartz A. (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22, 442–451.

    Article  PubMed  CAS  Google Scholar 

  • DeFerrari G., and Inestrosa N. (2000) Wnt signaling function in Alzheimer’s disease. Brain Res. 33, 1–12.

    Article  CAS  Google Scholar 

  • Drexler H. (1997) Activation of the cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci. U. S. A. 94, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G. and Schreiber S. L. (1998) Lactacystin, proteasome function, and cell fate. J. Biol. Chem. 273, 8545–8548.

    Article  PubMed  CAS  Google Scholar 

  • Forloni G., Terreni L., Bertani I., Fogliarino S., Invernizzi R., Assini A., et al. (2002) Protein misfolding in Alzheimer’s and Parkinson’s disease: genetics and molecular mechanisms. Neurobiol. Aging 23, 957–976.

    Article  PubMed  CAS  Google Scholar 

  • Garrido J., Godoy J., Alvarez A., Bronfman M., and Inestrosa N. (2002) Protein kinase C inhibits amyloid β-peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J. 16, 1982–1984.

    PubMed  CAS  Google Scholar 

  • Ghoshal N., Smiley J., DeMaggio A., Hoekstra M., Cochran E., Binder L., and Kuret J. (1999) A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am. J. Pathol. 155, 1163–1172.

    PubMed  CAS  Google Scholar 

  • Gumbiner B. (1995) Signal transduction by β-catenin. Curr. Opin. Cell Biol. 7, 634–640.

    Article  PubMed  CAS  Google Scholar 

  • Hagen T. and Vidal-Puig A. (2002) Characterisation of the phosphorylation of β-catenin at the GSK-3 priming site Ser45. Biochem. Biophys. Res. Commun. 294, 324–328.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J. and Gwinn-Hardy K. (1998) Genetic classification of primary neurodegenerative disease. Science 282, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  • Hart M., Concordet J., Lassot I., Albert I., del los Santos R., Durand H., et al. (1999) The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M. (1996) Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439.

    Article  PubMed  CAS  Google Scholar 

  • Hyman B., and Trojanowski J. (1997) Consensus recommendation for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnosis criteria for the neuropathological assessment of Alzheimer disease. J. Neuropathol. Exp. Neurol. 56, 1095–1097.

    Article  PubMed  CAS  Google Scholar 

  • Imai Y., Soda M., and Takahashi R. (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 275, 35,661–35,664.

    CAS  Google Scholar 

  • Johnston J., Illing M., and Kopito R. (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton 53, 26–38.

    Article  PubMed  CAS  Google Scholar 

  • Johnston J., Ward C., and Kopito R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  • Junn E., Lee S., Suhr U., and Mouradian M. (2002) Parkin accumulation in aggresomes due to proteasome impairment. J. Biol. Chem. 277, 47,870–47,877.

    Article  CAS  Google Scholar 

  • Keller J. N., Hanni K. B., and Markesbery W. R. (2000) Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 436–439.

    Article  PubMed  CAS  Google Scholar 

  • Kim K. B., Myung J., Sin N., and Crews C. M. (1999) Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: insights into specificity and potency. Bioorg. Med. Chem. Lett. 9, 3335–3340.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Latres E., Chiaur D., and Pagano M. (1999) Human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18, 849–854.

    Article  PubMed  CAS  Google Scholar 

  • Lee D. H. and Goldberg A. L. (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Leroy K., Boutajangout A., Authelet M., Woodgett J., Anderton B., and Brion J. (2002) The active form of glycogen synthase kinase-3 beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol. (Berl.) 103, 91–99.

    Article  CAS  Google Scholar 

  • Liu C., Li Y., Semenov M., Han C., Baeg G., Tan Y., et al. (2002) Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847.

    Article  PubMed  CAS  Google Scholar 

  • Lopez Salon M., Pasquini L., Besio Moreno M., Pasquini J., and Soto E. (2003) Relationship between beta-amyloid degradation and the 26S proteasome in neural cells. Exp. Neurol. 180, 131–43.

    Article  PubMed  CAS  Google Scholar 

  • Miller C., Rudnicka M., Hinton D., Blanks J., and Kozlowski M. (1987) Monoclonal antibody identification of subpopulations of cerebral cortical neurons affected in Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 84, 8657–8661.

    Article  PubMed  CAS  Google Scholar 

  • Miller J. and Moon R. (1996). Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539.

    Article  PubMed  CAS  Google Scholar 

  • Mirra S., Heyman D., Mckeel S., Sumi B., Crain B., Brownlee L., et al. (1991) The Consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41, 479–486.

    PubMed  CAS  Google Scholar 

  • Okamoto K., Hirai S., Izuka T., Yanagisawa T., and Watanabe M. (1991). Re-examination of granulovacuolar degeneration. Acta Neuropathol. (Berl.) 82, 340–345.

    Article  CAS  Google Scholar 

  • Orford O., Crockett C., Jensen J., Weissman A., and Byers S. (1997) Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J. Biol. Chem. 272, 24,735–24,738.

    Article  CAS  Google Scholar 

  • Pasquini L., Moreno M., Adamo A., Pasquini J., and Soto E. (2000) Lactacystin, a specific inhibitor of the proteasome, induces apoptosis and activates caspase-3 in cultured cerebellar granule cells. J. Neurosci. Res. 59, 601–611.

    Article  PubMed  CAS  Google Scholar 

  • Peifer M., and Polakis P. (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287, 1606–1609.

    Article  PubMed  CAS  Google Scholar 

  • Qiu J., Asai A., Chi S., Saito N., Hamada H., and Kirino T. (2000) Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J. Neurosci. 20, 259–265.

    PubMed  CAS  Google Scholar 

  • Sang C., Kobayashi Y., Du J., Katsumo M., Adachi H., Doyu M., and Sobue G. (2002) c-Jun N-terminal kinase pathway mediates Lactacystin-induced cell death in a neuronal differentiated Neuro2a cell line. Mol. Brain Res. 108, 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Schnell S., Staines W., and Wessendorf M. (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J. Histochem. Cytochem. 47, 719–730.

    PubMed  CAS  Google Scholar 

  • Schwab C., DeMaggio A., Ghoshal N., Binder L., Kuret J., and McGreer P. (2000) Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases. Neurobiol. Aging 21, 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Shimohata T., Sato A., Burke J., Strittmatter W., Tsuji S., and Onodera O. (2002) Expanded polyglutamine stretches form an “aggresome.” Neurosci. Lett. 323, 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Hattori N., Kubo S., Mizuno Y., Asakawa S., Minoshima S., et al. (2000) Familial Parkinson’s disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Sin N., Kim K. B., Elofsson M., Meng L., Auth H., Kwok B. H., and Crews C. M. (1999) Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg. Med. Chem. Lett. 9, 2283–2288.

    Article  PubMed  CAS  Google Scholar 

  • Smith M., Rudnicka-Nawrot M., Richey P., Praprotnik D., Mulvihill P., Miller C., et al. (1995) Carbonyl-related post-translational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J. Neurochem. 64, 2660–2665.

    Article  PubMed  CAS  Google Scholar 

  • Stadelmann C., Deckwerth T., Srinivasan A., Bancher C., Bruck W., Jellinger K., and Lassmann H. (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Am. J. Pathol. 155, 1459–1466.

    PubMed  CAS  Google Scholar 

  • Su J., Kesslak J., Head E., and Cotman C. (2002) Caspase-cleaved amyloid precursor protein and activated caspase-3 are co-localized in the granules of granulovacuolar degeneration in Alzheimer’s disease and Down’s syndrome brain. Acta Neuropathol. (Berl.) 104, 1–6.

    Article  CAS  Google Scholar 

  • van Leeuwen F., de Kleijn D., van den Hurk H., Neubauer A., Sonnemans M., Sluijs J., et al. (1998) Frameshift mutants of beta-amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279, 242–247.

    Article  PubMed  Google Scholar 

  • van Leeuwen F., Fischer D., Kamel D., Sluijs J., Sonnemans M., Benne R., et al. (2000) Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiol. Aging 21, 879–891.

    Article  PubMed  Google Scholar 

  • Waelter S., Boeddrich A., Lurz R., Scherzinger E., Lueder G., Lehrach H., and Wanker E. (2001) Accumulation of mutant Huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell 12, 1393–1407.

    PubMed  CAS  Google Scholar 

  • Wigley W., Fabunmi R., Lee M., Marino C., Muallem S., DeMartino G., and Thomas P. (1999) Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Willert K. and Nusse R. (1998) β-Catenin: a key mediator of Wnt signaling. Curr. Biol. Genet. Dev. 8, 95–102.

    Article  CAS  Google Scholar 

  • Winston J., Strack P., Beer-Romero P., Chu C., Elledge S., and Harper J. (1999) The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283.

    Article  PubMed  CAS  Google Scholar 

  • Xu M., Shibayama H., Kobayashi H., Yamada K., Ishihara R., Zhao P., et al. (1992) Granulovacuolar degeneration in the hippocampal cortex of aging and demented patients—a quantitative study. Acta Neuropathol. (Berl.) 85, 1–9.

    Article  CAS  Google Scholar 

  • Zhang Z., Hartmann H., Do V., Abramowski D., Sturchler-Pierrat C., et al. (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698–702.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X., Raina A., Rottkamp C., Aliev G., Perry G., Boux H., and Smith M. (2001) Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J. Neurochem. 76, 435–441.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghanevati, M., Miller, C.A. Phospho-β-catenin accumulation in alzheimer’s disease and in aggresomes attributable to proteasome dysfunction. J Mol Neurosci 25, 79–94 (2005). https://doi.org/10.1385/JMN:25:1:079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:1:079

Index Entries

Navigation