Skip to main content
Log in

Kinetic modeling of Na+-induced, Gβγ-dependent activation of G protein-gated K+ channels

  • Original Article
  • Receptors And Channels
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

G protein-activated K+(GIRK) channels are activated by numerous neurotransmitters that act on Gi/o proteins, via a direct interaction with the Gβγ subunit of G proteins. In addition, GIRK channels are positively regulated by intracellular Na+ via a direct interaction (fast pathway) and via a Gβγ-dependent mechanism (slow pathway). The slow modulation has been proposed to arise from the recently described phenomenon of Na+-induced reduction of affinity of interaction between GαGDP and Gβγ subunits of G proteins. In this scenario, elevated Na+ enhances basal dissociation of G protein heterotrimers, elevating free cellular Gβγ and activating GIRK. However, it is not clear whether this hypothesis can account for the quantitative and kinetic aspects of the observed regulation. Here, we report the development of a quantitative model of slow, Na+-dependent, G protein-mediated activation of GIRK. Activity of GIRK1F137S channels, which are devoid of direct interaction with Na+, was measured in excised membrane patches and used as an indicator of free Gβγ levels. The change in channel activity was used to calculate the Na+-dependent change in the affinity of G protein subunit interaction. Under a wide range of initial conditions, the model predicted that a relatively small decrease in the affinity of interaction of GαGDP and Gβγ (about twofold under most conditions) accounts for the twofold activation of GIRK induced by Na+, in agreement with biochemical data published previously. The model also correctly described the slow time course of Na+ effect and explained the previously observed enhancement of Na+-induced activation of GIRK by coexpressed Gαi3. This is the first quantitative model that describes the basal equilibrium between free and bound G protein subunits and its consequences on regulation of a Gβγ effector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albsoul-Younes A. M., Sternweis P. M., Zhao P., Nakata H., Nakajima S., Nakajima Y., and Kozasa T. (2001) Interaction sites of the G protein β subunit with brain G protein-coupled inward rectifier K+ channel. J. Biol. Chem. 276, 12,712–12,717.

    Article  CAS  Google Scholar 

  • Benians A., Leaney J. L., Milligan G., and Tinker A. (2003) The dynamics of formation and action of the ternary complex revealed in living cells using a G-protein-gated K+ channel as a biosensor. J. Biol. Chem. 278, 10,851–10,858.

    Article  CAS  Google Scholar 

  • Blanchet C. and Luscher C. (2002) Desensitization of muopioid receptor-evoked potassium currents: initiation at the receptor, expression at the effector. Proc. Natl. Acad. Sci. U. S. A. 99, 4674–4679.

    Article  PubMed  CAS  Google Scholar 

  • Blank J. L., Brattain K. A., and Exton J. H. (1992) Activation of cytosolic phosphoinositide phospholipase C by G-protein βγ subunits. J. Biol. Chem. 267, 23,069–23,075.

    CAS  Google Scholar 

  • Blumenstein Y., Maximyuk O. P, Lozovaya N., Yatsenko N. M., Kanevsky N., Krishtal O., and Dascal N. (2004) Intracellular Na+ inhibits voltage-dependent N-type Ca2+ channels by a G protein betagamma subunit-dependent mechanism. J. Physiol. 556, 121–134.

    Article  PubMed  CAS  Google Scholar 

  • Bokoch G. M., Bickford K., and Bohl B. P. (1988) Subcellular localization and quantitation of the major neutrophil pertussis toxin substrate Gen. J. Cell. Biol. 106, 1927–1936.

    Article  CAS  Google Scholar 

  • Cantor C. R. and Schimmel P. R. (1980) Biophysical Chemistry, 3rd ed., Freeman, New York.

    Google Scholar 

  • Chan K. W., Sui J. L., Vivaudou M., and Logothetis D. E. (1996) Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc. Natl. Acad. Sci. U. S. A. 93, 14,193–14,198.

    CAS  Google Scholar 

  • Clapham D. E. and Neer E. J. (1997) G protein βγsubunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203.

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D. (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947.

    Article  PubMed  CAS  Google Scholar 

  • Corey S. and Clapham D. E. (2001) The stoichiometry of Gβγ binding to G-protein-regulated inwardly rectifying K+ channels (GIRKs). J. Biol. Chem. 276, 11,409–11,413.

    Article  CAS  Google Scholar 

  • Cornish-Bowden A. (1976) Principles of Enzyme Kinetics, Butterworths, London, UK.

    Google Scholar 

  • Dascal N. (1997) Signalling via the G protein-activated K+ channels. Cell. Signal. 9, 551–573.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin A. C. (1998) Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J. Physiol. 506, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Doupnik C. A., Davidson N., Lester H. A., and Kofuji P. (1997) RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. U. S. A. 94, 10,461–10,466.

    Article  CAS  Google Scholar 

  • Gilchrist A., Bunemann M., Li A., Hosey M. M., and Hamm H. E. (1999) A dominant-negative strategy for studying roles of G proteins in vivo. J. Biol. Chem. 274, 6610–6616.

    Article  PubMed  CAS  Google Scholar 

  • Gilman A. G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Grasberger B., Minton A. P., DeLisi C., and Metzger H. (1986) Interaction between proteins localized in membranes. Proc. Natl. Acad. Sci. U. S. A. 83, 6258–6262.

    Article  PubMed  CAS  Google Scholar 

  • Hille B. (1992) G protein-coupled mechanisms and nervous signaling. Neuron 9, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Hille B. (2001) Ion Channels of Excitable Membranes, 3rd ed., Sinauer, Sunderland, MA.

    Google Scholar 

  • Ho I. H. and Murrell-Lagnado R. D. (1999) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274, 8639–8648.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya Y., Yamada M., Ito H., and Kurachi Y. (1996) A functional model for G protein activation of the muscarinic K+ channel in guinea pig atrial myocytes. Spectral analysis of the effect of GTP on single-channel kinetics. J. Gen. Physiol. 108, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Ito H., Sugimoto T., Kobayashi I., Takahashi K., Katada T., Ui M., and Kurachi Y. (1991) On the mechanism of basal and agonist-induced activation of the G protein-gated muscarinic K+ channel in atrial myocytes of guinea pig heart. J. Gen. Physiol. 98, 517–533.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova-Nikolova T. T. and Breitwieser G. E. (1997) Effector contributions to Gβγ-mediated signaling as revealed by muscarinic potassium channel gating. J. Gen. Physiol. 109, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova-Nikolova T. T., Nikolov E. N., Hansen C., and Robishaw J. D. (1998) Muscarinic K+ channel in the heart. Modal regulation by G protein βγsubunits. J. Gen. Physiol. 112, 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Kim C. M., Dion S. B., and Benovic J. L. (1993) Mechanism of β-adrenergic receptor kinase activation by G proteins. J. Biol. Chem. 268, 15,412–15,418.

    CAS  Google Scholar 

  • Krapivinsky G., Krapivinsky L., Wickman K., and Clapham D. E. (1995) Gβγ binds directly to the G protein-gated K+ channel, IKACh. J. Biol. Chem. 270, 29059–29062.

    Article  PubMed  CAS  Google Scholar 

  • Lesage F., Guillemare E., Fink M., Duprat F., Heurteaux C., Fosset M., et al. (1995) Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem. 270, 28,660–28,667.

    CAS  Google Scholar 

  • Nishida M. and MacKinnon R. (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111, 957–965.

    Article  PubMed  CAS  Google Scholar 

  • Park D., Jhon D. Y., Lee C. W., Lee K. H., and Rhee S. G. (1993) Activation of phospholipase C isozymes by G protein βγ subunits. J. Biol. Chem. 268, 4573–4576.

    PubMed  CAS  Google Scholar 

  • Peleg S., Varon D., Ivanina T., Dessauer C. W., and Dascal N. (2002) Gαi controls the gating of the G protein-activated K+ channel, GIRK. Neuron 33, 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Petit-Jacques J., Sui J. L., and Logothetis D. E. (1999) Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na+ and Mg2+ ions. J. Gen. Physiol. 114, 673–684.

    Article  PubMed  CAS  Google Scholar 

  • Pott L. (1979) On the time course of the acetylcholine-induced hyperpolarization in quiescent guinea-pig atria. Pflugers Arch. 380, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Pugh E. N. Jr. and Lamb T. D. (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim. Biophys. Acta. 1141, 111–149.

    Article  PubMed  CAS  Google Scholar 

  • Remmers A. E. (1998) Detection and quantitation of heterotrimeric G proteins by fluorescence resonance energy transfer. Anal. Biochem. 257, 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Rishal I., Keren-Raifman T., Yakubovich D., Ivanina T., Dessauer C. W., Slepak V. Z., and Dascal N. (2003) Na+ promotes the dissociation between GαGDP and Gβγ, activating G protein-gated K+ channels. J. Biol. Chem. 278, 3840–3845.

    Article  PubMed  CAS  Google Scholar 

  • Runnels L. W. and Scarlata S. F. (1998) Regulation of the rate and extent of phospholipase C-β2 effector activation by the βγ subunits of heterotrimeric G proteins. Biochemistry 37, 15,563–15,574.

    Article  CAS  Google Scholar 

  • Runnels L. W. and Scarlata S. F. (1999) Determination of the affinities between heterotrimeric G protein subunits and their phospholipase C-β effectors. Biochemistry 38, 1488–1496.

    Article  PubMed  CAS  Google Scholar 

  • Sadja R., Alagem N., and Reuveny E. (2002) Graded contribution of the Gβγ binding domains to GIRK channel activation. Proc. Natl. Acad. Sci. U. S. A. 99, 10,783–10,788.

    Article  CAS  Google Scholar 

  • Sadja R., Alagem N., and Reuveny E. (2003) Gating of GIRK channels: details of an intricate, membrane-delimited signaling complex. Neuron 39, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B. and Neher E. (1995) Single-Channel Recording, 2nd ed., Plenum, New York.

    Google Scholar 

  • Sakmann B., Noma A., and Trautwein W. (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303, 250–253.

    Article  PubMed  CAS  Google Scholar 

  • Sarvazyan N. A., Lim W. K., and Neubig R. R. (2002) Fluorescence analysis of receptor-G protein interactions in cell membranes. Biochemistry 41, 12,858–12,867.

    Article  CAS  Google Scholar 

  • Sarvazyan N. A., Remmers A. E., and Neubig R. R. (1998) Determinants of Gilα and βγ binding. Measuring high affinity interactions in a lipid environment using flow cytometry. J. Biol. Chem. 273, 7934–7940.

    Article  PubMed  CAS  Google Scholar 

  • Scarlata S. (2002) Regulation of the lateral association of phospholipase Cβ2 and G protein subunits by lipid rafts. Biochemistry 41, 7092–7099.

    Article  PubMed  CAS  Google Scholar 

  • Shea L. D., Neubig R. R., and Linderman J. J. (2000) Timing is everything the role of kinetics in G protein activation. Life Sci. 68, 647–658.

    Article  PubMed  CAS  Google Scholar 

  • Shea L. D., Omann G. M., and Linderman J. J. (1997) Calculation of diffusion-limited kinetics for the reactions in collision coupling and receptor cross-linking. Biophys J. 73, 2949–2959.

    Article  PubMed  CAS  Google Scholar 

  • Slesinger P. A., Reuveny E., Jan Y. N., and Jan L. Y. (1995) Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron 15, 1145–1156.

    Article  PubMed  CAS  Google Scholar 

  • Smrcka A. and Sternweis P. (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase Cβ by G protein α and βγ subunits. J. Biol. Chem. 268, 9667–9674.

    PubMed  CAS  Google Scholar 

  • Sodickson D. L. and Bean B. P. (1996) GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J. Neurosci. 16, 6374–6385.

    PubMed  CAS  Google Scholar 

  • Sowell M. O., Ye C., Ricupero D. A., Hansen S., Quinn S. J., Vassilev P. M., and Mortensen R. M. (1997) Targeted inactivation of αi2 or αi3 disrupts activation of the cardiac muscarinic K+ channel, IKAch, in intact cells. Proc. Natl. Acad. Sci. U. S. A. 94, 7921–7926.

    Article  PubMed  CAS  Google Scholar 

  • Sui J. L., Chan K. W., and Logothetis D. E. (1996) Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J. Gen. Physiol. 108, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Takigawa T. and Alzheimer C. (2002) Phasic and tonic attenuation of EPSPs by inward rectifier K+ channels in rat hippocampal pyramidal cells. J. Physiol. 539, 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Ueda N., Iniguez-Lluhi J. A., Lee E., Smrcka A. V., Robishaw J. D., and Gilman A. G. (1994) G protein βγ subunits. Simplified purification and properties of novel isoforms. J. Biol. Chem. 269, 4388–4395.

    PubMed  CAS  Google Scholar 

  • Valenzuela D., Han X., Mende U., Fankhauser C., Mashimo H., Huang P., et al. (1997) Gαo is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc. Natl. Acad. Sci. U. S. A. 94, 1727–1732.

    Article  PubMed  CAS  Google Scholar 

  • Vorobiov D., Bera A. K., Keren-Raifman T., Barzilai R., and Dascal N. (2000) Coupling of the muscarinic m2 receptor to G protein-activated K+ channels via Gαz and a receptor-Gαz fusion protein. Fusion between the receptor and Gαz eliminates catalytic (collision) coupling. J. Biol. Chem. 275, 4166–4170.

    Article  PubMed  CAS  Google Scholar 

  • Weiss J. N. (1997) The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841.

    PubMed  CAS  Google Scholar 

  • Wickman K. (2002) G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J. Neurosci. 22, 4328–4334.

    PubMed  Google Scholar 

  • Wickman K. D., Iniguez-Lluhl J. A., Davenport P. A., Taussig R., Krapivinsky G. B., Linder M. E., et al. (1994) Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel. Nature 368, 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M., Inanobe A., and Kurachi Y. (1998) G protein regulation of potassium ion channels. Pharmacol. Rev. 50, 723–760.

    PubMed  CAS  Google Scholar 

  • Zhang H., He C., Yan X., Mirshahi T., and Logothetis D. E. (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat. Cell. Biol. 1, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q., Pacheco M. A., and Doupnik C. A. (2002) Gating properties of GIRK channels activated by Gαo-and Gαi-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation. J. Physiol. 545, 355–373.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Yakubovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakubovich, D., Rishal, I. & Dascal, N. Kinetic modeling of Na+-induced, Gβγ-dependent activation of G protein-gated K+ channels. J Mol Neurosci 25, 7–19 (2005). https://doi.org/10.1385/JMN:25:1:007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:1:007

Keywords

Navigation