Skip to main content
Log in

Antioxidant treatment in alzheimer’s disease

Current state

  • Review Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Accumulating data from experimental and human studies indicate that oxidative stress (OS) plays a major role in the pathogenesis of Alzheimer’s disease (AD). The production of reactive oxygen species (ROS), which leads to OS, can occur very early, even before the appearance of symptoms and molecular events (β-amyloid plaques and neurofibrillary tangles), leading to tissue damage via several different cellular molecular pathways. ROS can cause damage to cardinal cellular components such as lipids, proteins, and nucleic acids (e.g., RNA, DNA), causing cell death by modes of necrosis or apoptosis. The damage can become more widespread because of the weakened cellular antioxidant defense systems. Therefore, treatment with antioxidants might theoretically act to prevent propagation of tissue damage and improve both survival and neurological outcome. Indeed, several studies preformed to date examined whether dietary intake of several antioxidants, mainly vitamins, might prevent or reduce the progression of AD. Although a few of the antioxidants showed some efficacy in these trials, no answer is yet available as to whether antioxidants are truly protective against AD. Reasons for these results might include, in part, blood-brain barrier (BBB) permeability, inappropriate timing of administration, or suboptimal drug levels at the target site in the central nervous system. Thus, antioxidant cocktails or antioxidants combined with other drugs may have more successful synergistic effects. Further, well-designed intervention, as well as observational investigations based on large cohorts studied over a long period of time with several methods for assessing antioxidant exposure, including relation to BBB penetration, are needed to test this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal M. F. (1995) Aging, energy and OS in neurodegenerative diseases. Ann. Neurol. 38, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F. (1996) Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 46, 661–666.

    Article  Google Scholar 

  • Burns A. and Zaudig M. (2002) Mild cognitive impairment in older people. Lancet 360, 1963–1965.

    Article  PubMed  Google Scholar 

  • Butterfield D. A., Drake J., Pocernich C., et al. (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7, 548–554.

    Article  PubMed  CAS  Google Scholar 

  • Christen Y. (2000) Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71, 621S-629S.

    PubMed  CAS  Google Scholar 

  • Clark C. M. (2000) Clinical manifestation and diagnostic evaluation of patients with Alzheimer’s disease, in Neurodegenerative Dementias: Clinical Features and Pathological Mechanisms, Clark C. M. and Trojanowski J. Q., eds. McGraw-Hill, New York, pp. 95–114.

    Google Scholar 

  • Commenges D., Scotet V., Renaud S., et al. (2000) Intake of flavonoids and risk of dementia. Eur. J. Epidemiol. 16, 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Crapper D. R., Quittkat S., Krishnan S. S., et al. (1980) Intracellular aluminum content in Alzheimer disease, dialysis encephalopathy, and experimental aluminum encephalopathy. Neuropathology (Berl.) 50, 19–24.

    Article  CAS  Google Scholar 

  • Cummings J. F. and Cole G. (2002) Alzheimer disease. JAMA 287, 2335–2338.

    Article  PubMed  CAS  Google Scholar 

  • Cummings J. F., Frank J. C., Cherry D., et al. (2002) Guidelines for managing Alzheimer’s disease: Part II. Treatment. Am. Fam. Physician 65, 2263–2272.

    PubMed  Google Scholar 

  • Cutler R. G. (1991) Human longevity and aging: possible role of reactive oxygen species. Ann. N. Y. Acad. Sci. 621, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Danysz W., Parsons C. G., Bresink I., et al. (1995) Glutamate in CNS disorders: A revived target for drug development. Drugs News Pers. 8, 261–277.

    Google Scholar 

  • Deibel M. A., Ehmann W. D., and Markesbery W. R. (1997) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer disease: possible relation to oxidative stress. J. Neurol. Sci. 143, 137–142.

    Article  Google Scholar 

  • Doble A. (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81, 163–221.

    Article  PubMed  CAS  Google Scholar 

  • Engelhart N. U., Geerlings M. I., Ruitenberg A., et al. (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287, 3223–3229.

    Article  PubMed  CAS  Google Scholar 

  • Fassbender K., Simons M., Bergmann C., et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 5856–5861.

    Article  PubMed  CAS  Google Scholar 

  • Flynn B. L. and Ranno A. E. (1999) Pharmacologic management of Alzheimer disease. Part II: Antioxidants, antihyprtensives, and ergolid derivatives. Ann. Pharmacother. 33, 188–197.

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa N. K. (1999) Aging: is oxidative stress a marker or is it causal? Proc. Soc. Exp. Biol. Med. 222, 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Melamed E., and Offen D. (2001) Oxidative stress induced-neurodegenerative disease: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40, 959–975.

    Article  PubMed  CAS  Google Scholar 

  • Gortelmeyer R. and Erbler H. (1992) Memantine in the treatment of mild to moderate dementia syndrome. Drug Res. 42, 904–913.

    CAS  Google Scholar 

  • Greenamyre E. F., Maragos R. L., Albin J. B., et al. (1988) Glutamate transmission and toxicity in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 12, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Grundman M. (2000) Vitamin E and Alzheimer’s disease: the basis for additional clinical trials. Am. J. Clin. Nutr. 71, 630S-636S.

    PubMed  CAS  Google Scholar 

  • Harman D. (1992) Role of free radicals in aging and disease. Ann. N. Y. Acad. Sci. 673, 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Hall N., Subramanian R., et al. (1995) Brain regional correspondence between Alzheimer disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S. (1996) Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease. Acta Neurol. Scand. 93, 18–24.

    Google Scholar 

  • Knopman D. (2001) Pharmacotherapy for Alzheimer disease. Curr. Neurol. Neurosci. Rep. 1, 428–434.

    Article  PubMed  CAS  Google Scholar 

  • Laurin D., Foley D. J., Masaki K. H., et al. (2002) Vitamin E and C supplements and risk of dementia. JAMA 288, 2266–2268.

    Article  PubMed  CAS  Google Scholar 

  • Lovell M. A. and Markesbery W. R. D. (2001) Ration of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer’s disease ventricular cerebrospinal fluid. Arch. Neurol. 58, 392–396.

    Article  PubMed  CAS  Google Scholar 

  • Maccioni R. B., Munoz J. P., and Barbeito L. (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch. Med. Res. 32, 367–381.

    Article  PubMed  CAS  Google Scholar 

  • Marcus D. L., Thomas C., Rodriguez C., et al. (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer disease. Exp. Neurol. 150, 40–44.

    Article  PubMed  CAS  Google Scholar 

  • Masaki K. H., Losonczy K. G., Izmirlian G., et al. (2000) Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology 54, 1265–1272.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Davis D., et al. (1992) β-Amyloid peptides destabilize calcium homeostasis and render human cultured neurons vulnerable to excitotoxicity. J. Neurosci. 12, pp. 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Barger S. W., Lieberburg I., et al. (1993) β-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci. 16, 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y., Picciano M., La Francois J., et al. (2001) Fibrillar β-amyloid evokes oxidative damage in transgenic mouse model of Alzheimer’s disease. Neuroscience 104, 609–613.

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P., MacGarvey U., and Beal M. F. (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer disease. Ann. Neurol. 36, 747–751.

    Article  PubMed  CAS  Google Scholar 

  • Montine T. J., Markesbery W. R., Morrow J. D., et al. (1998) Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer disease. Ann. Neurol. 44, 410–413.

    Article  PubMed  CAS  Google Scholar 

  • Morris M. C., Beckett L. A., Scherr P. A., et al. (1998) Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis. Assoc. Disord. 12, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Morris M. C., Evans D. A., Bienias J. L., et al. (2002) Dietary intake of antioxidants nutrients and risk of incident Alzheimer disease in a biracial community study. JAMA 287, 3230–3237.

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A., Perry G., Aliev G., et al. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759–767.

    PubMed  CAS  Google Scholar 

  • Palmer A. M. and Burns M. A. (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res. 645, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla M.A., Omar R.A., Kim K.S., et al. (1992) Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease. Am. J. Pathol. 140, 621–628.

    PubMed  CAS  Google Scholar 

  • Penney J. B., Maragos W. F., Greenamyre J. T., et al. (1990) Excitatory amino acid binding sites in the hippocampal region of Alzheimer’s disease and other dementias. J. Neurol. Neurosurg. Psychiatry 53, 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Pitchumoni S. S. and Doraiswamy P. M. (1998) Current status of antioxidant therapy for Alzheimer’s disease. J. Am. Geriatr. Soc. 46, 1566–1572.

    PubMed  CAS  Google Scholar 

  • Pratico D. (2002) Alzheimer’s disease and oxygen radicals: new insights. Biochem. Pharmacol. 63, 563–567.

    Article  PubMed  CAS  Google Scholar 

  • Pratico D., Clark C. M., Liun F., et al. (2002) Increase of brain oxidative stress in mild cognitive impairment a possible predictor of Alzheimer’s disease. Arch. Neurol. 59, 972–976.

    Article  PubMed  Google Scholar 

  • Pratico D., Uryu K., Leight S., et al. (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer’s amyloidosis. J. Neurosci. 21, 4183–4187.

    PubMed  CAS  Google Scholar 

  • Reisberg B. (2000) Memantine in moderately severe to severe Alzheimer’s disease (AD): results of a placebocontrolled 6-month trial. Neurobiol. Ageing 21, S275.

    Google Scholar 

  • Ramassamy C., Krzywokowski P., Bastianetto S., et al., (1998) Apolipoprotein E, oxidative stress and EGb 761 in Alzheimer’s disease brain, in Gingo Biloba Extract (EGb 761) Study: Lesson from Cell Biology, Packer L. and Christen Y., eds., Elsevier, Paris, pp. 69–83.

    Google Scholar 

  • Rosler M., Retz W., Thome J., et al. (1998) Free radicals in Alzheimer’s dementia: currently available therapeutic strategies. J. Neural Transm. Suppl. 54, 211–219.

    PubMed  CAS  Google Scholar 

  • Rutten B. P., Steinbusch H. W., Korr H., and Schmitz C. (2002) Antioxidants and Alzheimer’s disease: from bench to bedside (and back again). Curr. Opin. Clin. Nutr. Metab. Care 5, 645–651.

    Article  PubMed  CAS  Google Scholar 

  • Sano M., Ernesto C., Thomas R.G., et al. (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease; the Alzheimer’s disease Cooperative Study. N. Engl. J. Med. 336, 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    PubMed  CAS  Google Scholar 

  • Smith M. A., Kutty R. K., Richey P. L., et al. (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am. J. Pathol. 140, 621–628.

    Google Scholar 

  • Sun Y. X., Crisby M., Lindgren S., et al. (2003) Pravastatin inhibits pro-inflammatory effects of Alzheimer’s peptide Abeta(1–42) in glioma cell culture in vitro. Pharmacol. Res. 47, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Tabet N., Birks J., and Evans G. (2000) Vitamin E for Alzheimer’s disease. Cochrane Databases Syst. Rev. 4.

  • Wisniewski T. and Sigurdsson E. M. (2002) Immunization treatment approaches in Alzheimer and prion diseases. Curr. Neurol. Neurosci. Rep. 2, 400–404.

    Article  PubMed  Google Scholar 

  • Yan S. D., Chen X., Schmidt A. M., et al. (1994) Glycated tau protein in Alzheimer’s disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. U. S. A. 91, 7787–7791.

    Article  PubMed  CAS  Google Scholar 

  • Zemlan F. P., Theinhaus O. J., and Bosmann H. B. (1989) Supperoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical formation. Brain Res. 476, 160–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Offen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilgun-Sherki, Y., Melamed, E. & Offen, D. Antioxidant treatment in alzheimer’s disease. J Mol Neurosci 21, 1–11 (2003). https://doi.org/10.1385/JMN:21:1:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:21:1:1

Index Entries

Navigation