Skip to main content

Advertisement

Log in

Immunization treatment approaches in Alzheimer’s and prion diseases

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

There is growing realization that many neurodegenerative conditions have the same underlying pathogenetic mechanism: a change in protein conformation, where the Β -sheet content is increased. In Alzheimer’s disease (AD), amyloid deposition in the form of neuritic plaques and congophilic angiopathy is driven by the conversion of normal soluble amyloid Β (sAΒ) to AΒ plaques, whereas in the prionoses the critical event is the conversion of normal prion protein, PrPC, to PrPSc. This common theme in the pathogenesis of these disorders and the extracellular localization of the accumulating abnormal protein make them highly amenable to therapeutic approaches based on experimental manipulation of protein conformation and clearance. Different approaches under development include drugs that affect the processing of the precursor proteins, enhance clearance of the amyloidogenic protein, and inhibit or prevent the conformation change. Particularly interesting are recent studies of immune system activation, which appear to increase the clearance of the disease-associated protein. These immunologically based approaches are highly effective in animal models of these disorders, and in these model systems are associated with no obvious side effects. In transgenic mice with AD-related pathology, immunization has also been shown to prevent age-related cognitive impairment. However, the first clinical trial of this approach in AD patients was associated with unacceptable toxicity. These immune-based treatment approaches have great potential as rational therapies for this devastating group of disorders, but additional development is needed before they can be safely applied to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jackson GS, Collinge J: The molecular pathology of CJD: old and new variants. Mol Pathol 2001, 54:393–399.

    PubMed  CAS  Google Scholar 

  2. Wisniewski T, Sigurdsson EM, Aucouturier P, Frangione B: In Molecular and Cellular Pathology in Prion Disease. Edited by Baker HF. Totowa, New Jersey: Humana Press; 2001:223–236.

    Chapter  Google Scholar 

  3. Wisniewski T, Ghiso J, Frangione B: Biology of AΒ amyloid in Alzheimer’s disease. Neurobiol Dis 1997, 4:313–328.

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE: Prion protein biology. Cell 1998, 93:337–348.

    Article  PubMed  CAS  Google Scholar 

  5. Selkoe DJ: The origins of Alzheimer disease: A is for amyloid. JAMA 2000, 283:1615–1617.

    Article  PubMed  CAS  Google Scholar 

  6. Walsh DM, Klyubin I, Fadeeva JV, et al.: Naturally secreted oligomers of amyloid Β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002, 416:535–539.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis RJ, Pinheiro TJ: Danger—misfolding proteins. Nature 2002, 416:483–484.

    Article  PubMed  CAS  Google Scholar 

  8. Ghiso J, Wisniewski T, Frangione B: Unifying features of systemic and cerebral amyloidosis. Mol Neurobiol 1994, 8:49–64.

    PubMed  CAS  Google Scholar 

  9. Bucciantini M, Giannoni E, Chiti F, et al.: Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416:507–511.

    Article  PubMed  CAS  Google Scholar 

  10. Shastry BS: Molecular and cell biological aspects of Alzheimer disease. J Hum Genet 2001, 46:609–618.

    Article  PubMed  CAS  Google Scholar 

  11. Tanzi RE, Bertram L: New frontiers in Alzheimer’s disease genetics. Neuron 2001, 32:181–184.

    Article  PubMed  CAS  Google Scholar 

  12. Walsh DM, Hartley DM, Kusumoto Y, et al.: Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates J Biol Chem 1999, 274:25945–25952.

    CAS  Google Scholar 

  13. Yankner BA, Dawes LR, Fisher S, et al.: Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 1989, 245:417–420.

    Article  PubMed  CAS  Google Scholar 

  14. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB: Amyloid beta-protein fibrillogenesis—detection of a protofibrillar intermediate. J Biol Chem 1997, 272:22364–22372.

    Article  PubMed  CAS  Google Scholar 

  15. Sigurdsson EM, Lorens SA, Hejna MJ, Dong XW, Lee JM: Local and distant histopathological effects of unilateral amyloidbeta 25–35 injections into the amygdala of young F344 rats. Neurobiol Aging 1996, 17:893–901.

    Article  PubMed  CAS  Google Scholar 

  16. Sigurdsson EM, Lee JM, Dong XW, Hejna MJ, Lorens SA: Bilateral injections of amyloid-beta 25–35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiol Aging 1997, 18:591–608.

    Article  PubMed  CAS  Google Scholar 

  17. Strittmatter W, Roses A: Apolipoprotein E and Alzheimer’s Disease. Ann Rev Neurosci 1996, 19:53–77.

    Article  PubMed  CAS  Google Scholar 

  18. Potter H, Wefes IM, Nilsson LN: The inflammation-induced pathological chaperones ACT and apo-E are necessary catalysts of Alzheimer amyloid formation. Neurobiol Aging 2001, 22:923–930.

    Article  PubMed  CAS  Google Scholar 

  19. Dominguez DI, De Strooper B, Annaert W: Secretases as therapeutic targets for the treatment of Alzheimer’s disease. Amyloid 2002, 8:124–142.

    Google Scholar 

  20. Marabaud P, Shioi J, Serban G, et al.: A presenilin1/g-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 2002, in press.

  21. Soto C, Kindy MS, Baumann M, Frangione B: Inhibition of Alzheimer’s amyloidosis by peptides that prevent Β -sheet conformation. Biochem Biophys Res Comm 1996, 226:672–680.

    Article  PubMed  CAS  Google Scholar 

  22. Soto C, Sigurdsson EM, Morelli L, et al.: Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 1998, 4:822–826.

    Article  PubMed  CAS  Google Scholar 

  23. Sigurdsson EM, Permanne B, Soto C, Wisniewski T, Frangione B: In vivo reversal of amyloid beta lesions in rat brain. J Neuropath Exp Neurol 2000, 59:11–17.

    PubMed  CAS  Google Scholar 

  24. Permanne B, Adessi C, Saborio GP, et al.: Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a Β -sheet breaker peptide. FASEB J 2002, 16:860–862.

    PubMed  CAS  Google Scholar 

  25. Pappolla MA, Sos M, Omar RA, et al.: Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci 1997, 17:1683–1690.

    PubMed  CAS  Google Scholar 

  26. Pappolla M, Bozner P, Soto C, et al.: Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 1998, 273:7185–7188.

    Article  PubMed  CAS  Google Scholar 

  27. Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG: Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry 1996, 35:13568–13578.

    Article  PubMed  CAS  Google Scholar 

  28. Matsubara E, Soto C, Governale S, Frangione B, Ghiso J: Apolipoprotein J and Alzheimer’s amyloid beta solubility. Biochem J 1996, 316:671–679.

    PubMed  CAS  Google Scholar 

  29. Merlini G, Ascari E, Amboldi N, et al.: Interaction of the anthracycline 4′-iodo-4′-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc Natl Acad Sci U S A 1995, 92:2959–2963.

    Article  PubMed  CAS  Google Scholar 

  30. Tomiyama T, Shoji A, Kataoka K, et al.: Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin—its possible function as a hydroxyl radical scavenger. J Biol Chem 1996, 271:6839–6844.

    Article  PubMed  CAS  Google Scholar 

  31. Tomiyama T, Kaneko H, Kataoka K, Asano S, Endo N: Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction. Biochem J 1997, 322:859–865.

    PubMed  CAS  Google Scholar 

  32. Wood SJ, MacKenzie L, Maleeff B, Hurle MR, Wetzel R: Selective inhibition of AΒ fibril formation. J Biol Chem 1996, 271:4086–4092.

    Article  PubMed  CAS  Google Scholar 

  33. Kisilevsky R, Lemieux LJ, Fraser PE, et al.: Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med 1995, 1:143–148.

    Article  PubMed  CAS  Google Scholar 

  34. Schenk D, Barbour R, Dunn W, et al.: Immunization with amyloid-beta attenuates Alzheimer disease-like pathology in the PDAPP mice. Nature 1999, 400:173–177. First reported use of the amyloid Β peptide as an immunogen in Alzheimer’s disease transgenic mice. The vaccinated mice had a much lower amyloid burden compared with control injected mice.

    Article  PubMed  CAS  Google Scholar 

  35. Bard F, Cannon C, Barbour R, et al.: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of alzheimer disease. Nat Med 2000, 6:916–919.

    Article  PubMed  CAS  Google Scholar 

  36. Morgan D, Diamond DM, Gottschall PE, et al.: AΒ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2001, 408:982–985. One of a pair of manuscripts first showing that amyloid Β peptide vaccination not only reduces amyloid burden, but also prevents memory loss in Alzheimer’s disease model transgenic mice.

    Article  Google Scholar 

  37. Janus C, Pearson J, McLaurin J, et al.: AΒ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 2000, 408:979–982. Shows that amyloid Β peptide vaccination reduces age-associated behavioral impairment, along with reducing the amyloid burden, in Alzheimer’s disease model transgenic mice.

    Article  PubMed  CAS  Google Scholar 

  38. Wisniewski T, Ghiso J, Frangione B: Biology of AΒ amyloid in Alzheimer’s disease. Neurobiol Dis 1997, 4:313–328.

    Article  PubMed  CAS  Google Scholar 

  39. Zlokovic BV, Ghiso J, Mackic JB, et al.: Blood-brain barrier transport of circulating Alzheimer’s amyloid beta. Biochem Biophys Res Commun 1993, 197:1034–1040.

    Article  PubMed  CAS  Google Scholar 

  40. Maness LM, Banks WA, Podlisny MB, Selkoe DJ, Kastin AJ: Passage of human amyloid beta-protein 1–40 across the murine blood-brain barrier. Life Sci 1994, 55:1643–1650.

    Article  PubMed  CAS  Google Scholar 

  41. Martel CL, Mackic JB, McComb JG, Ghiso J, Zlokovic BV: Blood-brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer’s amyloid beta in guinea pigs. Neurosci Lett 1996, 206:157–160.

    Article  PubMed  CAS  Google Scholar 

  42. Poduslo JF, Curran GL, Haggard JJ, Biere AL, Selkoe DJ: Permeability and residual plasma volume of human, Dutch variant, and rat amyloid Β -protein 1–40 at the blood-brain barrier. Neurobiol Dis 1997, 4:27–34.

    Article  PubMed  CAS  Google Scholar 

  43. Mackic JB, Weiss MH, Miao W, et al.: Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer’s amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy. J Neurochem 1998, 70:210–215.

    Article  PubMed  CAS  Google Scholar 

  44. Poduslo JF, Curran GL, Sanyal B, Selkoe DJ: Receptor-mediated transport of human amyloid beta-protein 1–40 and 1–42 at the blood-brain barrier. Neurobiol Dis 1999, 6:190–199.

    Article  PubMed  CAS  Google Scholar 

  45. Shibata M, Yamada S, Kumar SR, et al.: Clearance of Alzheimer’s amyloid-beta(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000, 106:1489–1499.

    Article  PubMed  CAS  Google Scholar 

  46. Ji Y, Permanne B, Sigurdsson EM, Holtzman DM, Wisniewski T: Amyloid beta 40/42 clearance across the blood-brain barrier following intra-ventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. J Alzheimer’s Dis 2001, 3:23–30.

    CAS  Google Scholar 

  47. Jarrett JT, Berger EP, Lansbury PT: The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993, 32:4693–4697.

    Article  PubMed  CAS  Google Scholar 

  48. Werdelin O: Fact and speculation on the function of immune response genes in antigen presentation. Scand J Immunol 1981, 14:623–629.

    Article  PubMed  CAS  Google Scholar 

  49. Pallintto MM, Ghanta J, Heinzelman P, Kiessling LL, Murphy RM: Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochem 1999, 38:3570–3578.

    Article  Google Scholar 

  50. Sigurdsson EM, Scholtzova H, Mehta P, Frangione B, Wisniewski T: Immunization with a nontoxic/nonfibrillar amyloid-beta homologous peptide reduces Alzheimer’s disease associated pathology in transgenic mice. Am J Pathol 2001, 159:439–447. Shows that vaccination using nonfibrillar, nonamyloidogenic amyloid Β (AΒ) homologous peptides is as effective as aged AΒ 1–42 peptides at reducing the amyloid burden in Alzheimer’s disease model transgenic mice, without the potential toxicity associated with the fibrillar AΒ 1–42.

    PubMed  CAS  Google Scholar 

  51. Sigurdsson EM, Brown DR, Daniels M, et al.: Vaccination delays the onset of prion disease in mice. Am J Pathol 2002, 161:13–17. First study to show that immunization with the prion protein can delay the onset of scrapie in a mouse model of prion disease.

    PubMed  CAS  Google Scholar 

  52. Demaimay R, Harper J, Gordon H, et al.: Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem 1998, 71:2534–2541.

    Article  PubMed  CAS  Google Scholar 

  53. Caspi S, Halimi M, Yanai A, et al.: The anti-prion activity of Congo red. Putative mechanism. J Biol Chem 1998, 273:3484–3489.

    Article  PubMed  CAS  Google Scholar 

  54. Tagliavini F, McArthur RA, Canciani B, et al.: Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 1997, 276:1119–1122.

    Article  PubMed  CAS  Google Scholar 

  55. Adjou KT, Demaimay R, Deslys JP, et al.: MS-8209, a water-soluble amphotericin Β derivative, affects both scrapie agent replication and PrPres accumulation in Syrian hamster scrapie. J Gen Virol 1999, 80:1079–1085.

    PubMed  CAS  Google Scholar 

  56. Adjou KT, Demaimay R, Lasmezas CI, et al.: Differential effects of a new amphotericin Β derivative, MS-8209, on mouse BSE and scrapie: implications for the mechanism of action of polyene antibiotics. Res Virol 1996, 147:213–218.

    Article  PubMed  CAS  Google Scholar 

  57. Farquhar C, Dickinson A, Bruce M: Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet 1999, 353:117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisniewski, T., Sigurdsson, E.M. Immunization treatment approaches in Alzheimer’s and prion diseases. Curr Neurol Neurosci Rep 2, 400–404 (2002). https://doi.org/10.1007/s11910-002-0065-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0065-7

Keywords

Navigation