Skip to main content
Log in

LVV-hemorphin-4 modulates Ca2+/calmodulin-dependent pathways in the immune system by the same mechanism as in the brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The effect of synthetic LVV-hemorphin-4 (LVV-H4) on human blood and tonsils lymphocytes total phosphatase activity was studied by a spectrofluorimetric assay using 4-methylumbelliferyl phosphate (4-MUP) as a substrate. It has been established that LVV-H4 at concentrations of 10−9 to 10−7 M induces the inhibition of human blood (12–24%) and tonsils (42–45%) lymphocytes total phosphatase activity as 1 mM EGTA. The same peptide at concentrations of 10−5 to 10−4 M induces activation of human blood (48–57%) and tonsils (20–25%) lymphocytes total phosphatase activity. LVV-H4 is able to neutralize the inhibitory effect of calmodulin (CaM) antagonist and calcineurin inhibitor trifluoperazine (TFP) on human blood lymphocyte total phosphatase activity. It is suggested that a dose-dependent activation/inhibition of lymphocytes total phosphatase activity is due to activation/inhibition of lymphocyte calcineurin activity. Using enzyme-linked immunosorbent assay (ELISA) it was found that LVV-H4 neutralized the inhibitory effect of cyclosporin A (CsA) and TFP on interleukin-2 (IL-2) synthesis by activated blood lymphocytes. LVV-H4 also affects the lymphocytes proliferation, suppressed in pathophysiological condition, and restores their function by enhancement of DNA synthesis, as determined by measuring of [3H] thymidine incorporation into lymphocytes. It has been proposed that CaM is an essential component in starting up the molecular mechanism of hemorphins action and that calcineurin is a key enzyme underlying the molecular mechanism of hemorphins action on the brain and immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony F. A., Merat D. L., and Cheung W. Y. (1986) A spectrofluorimetric assay of calmodulin-dependent protein phosphatase using 4-methylumbelliferyl phosphate. Anal. Biochem. 155, 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Barkhudaryan N., Orosz F., Liliom K., Barsegyan K., Ovadi J., and Galoyan A. (1991) New data on binding of hypothalamic coronaro-constrictory peptide factors with calmodulin. Neurochemistry (CIS) 10, 155–166.

    Google Scholar 

  • Barkhudaryan N., Barsegyan K., Avetisian N., Zakaryan T., and Galoyan A. (1992a) The changes of the sensitivity of calmodulin against its antagonists under the influence of hypothalamic coronaro-constrictory peptide factors. Neurochemistry (CIS) 11, 228–234.

    Google Scholar 

  • Barkhudaryan N., Oberthuer W., Lottspeich F., and Galoyan A. (1992b) Structure of hypothalamic coronaro-constrictory peptide factors. Neurochem. Res. 17, 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  • Barkhudaryan N. (1994) Structural and functional investigations of coronaro-constrictory peptide factors, isolated from bovine hypothalamus. Dr. Sci. thesis. Institute of Biochemistry NAS RA, Yerevan, Republic of Armenia.

    Google Scholar 

  • Barkhudaryan N. and Galoyan A> (1997) How hemorphins can affect the immune system. Abs. Int. Small Conference Brain and Immune System, Yerevan-Dilidjan, RA, p. 12.

  • Barsegyan K., Barkhudaryan N., and Galoyan A. (1992) The investigation of the effect of native and synthetic coronaro-constrictory peptide factors on Ca2+, calmodulin-dependent phosphoprotein phosphatase activity. Neurochemistry (CIS) 11, 141–149.

    Google Scholar 

  • Carr D. J. J. (1991) The role of endogenous opioids and their receptors in the immune system. Proc. Soc. Exp. Biol. Med. 198, 710–720.

    PubMed  CAS  Google Scholar 

  • Dumont F. J., Staruch M. J., Fischer P., DaSilva C., and Camacho R. (1998) Inhibition of T cell activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production. J. Immunol. 160, 2579–2589.

    PubMed  CAS  Google Scholar 

  • Gambarov S. S., Bakunts I. S., Dadalyan S. S., Ayrapetyan S. N., and Khzardjyan A. M. (1990) The effect of myelopide on the Ca influx into neuronal cells of Helix pomatia. 1st International Congress ISNIM, Italy, p. 87.

  • Garreau I., Zhao Q., Pejoan C., Cupo A., and Piot J.-M. (1995) VV-hemorphin-7 and LVV-hemorphin-7 released during in vitro peptic hemoglobin hydrolysis are morphinomimetic peptides. Neuropeptides 28, 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Glamsta E.-L., Marklund A., Hellman U., Wernstedt C. H., Terenius L., and Nyberg F. (1991) Isolation and characterization of hemoglobin derived opioid peptides from the human pituitary gland. Regul. Pept. 34, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Glamsta E.-L., Meyerson B., Silberring J., Terenius L., and Nyberg F. (1992) Isolation of hemoglobin-derived opioid peptide from cerebrospinal fluid of patients with cerebrovascular bleedings. Biochem. Biophys. Res. Commun. 184, 1060–1066.

    Article  PubMed  CAS  Google Scholar 

  • Jain J., McCaffrey P. G., Miner Z., Kerppola T. K., Lambert J. N., Verdlne G. L., et al. (1993) The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 365, 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Karelin A. A., Phillippova M. M., Karelina E. V., and Ivanov V. T. (1994) Isolation of endogenous hemorphin-related hemoglobin fragments from bovine brain. Biochem. Biophys. Res. Commun. 202, 410–415.

    Article  PubMed  CAS  Google Scholar 

  • Klee C. B., Draetta G. F., and Hubbard M. J. (1988) Calcineurin. Adv. Enzymol. 61, 149–200.

    PubMed  CAS  Google Scholar 

  • Lazo J. S. and Larner J. M. (1998) Individual antineoplastic drugs, in Human Pharmacology, Molecular to Clinical, 3rd ed. (Brody T. M., Larner J., and Minneman K. P., eds.), Mosby, St. Louis, MO, pp. 599–613.

    Google Scholar 

  • Liu J., Farmer J. D., Lane W. S., Friedman J., Weissman I., and Schreiber S. L. (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815.

    Article  PubMed  CAS  Google Scholar 

  • Marakhova I. I., Ivanova A. E., Toporova F. V., Vereninov A. A., and Vinogradova T. A. (1999) Functional expression of the Na/K pump is controlled via a cyclosporin A-sensitive signalling pathway in activated human lymphocytes. FEBS Lett. 456, 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Meierhofer J., Waki M., Hermer E. P., Lambros T. J., Makofske R. C., and Chang C.-D. (1979) Solid phase synthesis without repetitive acidolysisd. Int. J. Pept. Res. 13, 35–39.

    Article  Google Scholar 

  • Mikhailova A. A. (2000) Pre-clinical studies of mielopeptides with antitumor and antibacterial activities. Int. Congress Advances in Immunology and Allergology at the Threshold of the XXI Century Eliat, Israel, 2000. Int. J. Immunorehabilitation 2, 102–103.

    Google Scholar 

  • Moeller I., Albiston A. L., Lew R. A., Mendelsohn F. A. O., and Chai S.-Y. (1999) A globin fragment, LVV-hemorphin-7, induces [3H] thymidine incorporation in a neuronal cell line via the AT4 receptor. J. Neurochem. 73, 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Molina P. E., Malek S., Lang C. H., Qian L., Naukam R., and Abumrad N. N. (1997) Early organ-specific hemorrhage-induced increases in tissue cytokine content: associated neurohormonal and opioid alterations. Neuroimmunomodulation 4, 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura K. and Hazato T. (1993) Isolation and identification of an endogenous inhibitor of enkephalin-degrading enzymes from bovine spinal cord. Biochem. Biophys. Res. Commun. 194, 713–719.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg F., Sanderson K., and Glamsta E.-L. (1997) The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers Peptide Sci. 43, 147–156.

    Article  CAS  Google Scholar 

  • Ohyagi Y., Yamada T., and Goto I. (1994) Hemoglobin as a novel protein developmentally regulated in neurons. Brain Res. 635, 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Petrov R. V., Mikhailova A., and Fonina L. A. (1997) Bone marrow immunoregulatory peptides (myelopeptides): isolation, structure, and functional activity. Biopolymers Peptide Sci. 43, 139–146.

    Article  CAS  Google Scholar 

  • Ross M., Ghazarossian V., Cox B. M., and Goldstein A. (1978) Radioimmunoassay for β-endorphin: comparison of properties of two antisera. Life Sci. 22, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Thomas W. G., Pipolo L., and Qian H. (1999) Identification of a Ca2+/calmodulin-binding domain within the carboxylterminus of the angiotensin II (AT1A) receptor. FEBS Lett. 455, 367–371.

    Article  PubMed  CAS  Google Scholar 

  • Wang J.-Z., Gong C.-X., Zaidi T., Grundke-Iqbal I., and Iqbal K. (1995) Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J. Biol. Chem. 270, 4854–4860.

    Article  PubMed  CAS  Google Scholar 

  • Wang D., Tolbert L. M., Carlson K. W., and Sadee W. (2000) Nuclear Ca2+/calmodulin translocation activated by μ-opioid (OP3) receptor. J. Neurochem. 74, 1418–1425.

    Article  PubMed  CAS  Google Scholar 

  • Weiss B., Sellinger-Barnette M., Winkler J. D., Schechter L. E., and Prozialeck W. C. (1985) Calmodulin antagonists: structure-activity relationships, in Calmodulin Antagonists and Cellular Physiology (Hidaka H. and Hartshorne D. J., eds.), Academic Press, Inc., Orlando, FL, pp. 45–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Barkhudaryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkhudaryan, N., Gambarov, S., Gyulbayazyan, T. et al. LVV-hemorphin-4 modulates Ca2+/calmodulin-dependent pathways in the immune system by the same mechanism as in the brain. J Mol Neurosci 18, 203–210 (2002). https://doi.org/10.1385/JMN:18:3:203

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:18:3:203

Index Entries

Navigation