Skip to main content
Log in

The growth-associated protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in schizophrenia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia is a common and severe psychiatric disorder of unknown etiology. Numerous neuropathological studies have found subtle structural changes in limbic structures, especially medial temporal lobe structures and the gyrus cinguli. To test the hypothesis that synaptic disturbances are involved in the pathogenesis of schizophrenia, we studied the growth-associated protein 43 (GAP-43), a protein localized to presynaptic terminals, suggested to be involved in establishment and remodeling of synaptic connections, in postmortem brain tissue, using quantitative Western blotting immunohistochemistry. The material consisted of brain tissue from 17 schizophrenics (80±11 yr), diagnosed according to the DSM-III-R criteria, and 20 age-matched controls (75±13 yr). Quantitative analyses showed increased GAP-43 protein levels in schizophrenic compared to control brains, both in the hippocampus (2.43±0.78 vs 1.00±0.29; p<0.0001) and in the gyrus cinguli (1.52±0.21 vs 1.00±0.35; p<0.0001). Also by immuno-histochemistry, increased GAP-43 staining was found in schizophrenic compared with control brains, throughout all layers of the gyrus cinguli and the hippocampus. Anomalous synaptic sprouting and reorganization, with resultant “miswiring,” as well as a defect in synaptic pruning have been hypothesized to be pathogenetic factors in schizophrenia. We suggest that a decreased synaptic density, whether caused by disturbed development or damage/degeneration, may elicit a reactive synaptogenesis (reflected by an increase in GAP-43), which may be functional or anomalous. Synaptic pathology in the limbic system may be of importance in the development of psychotic symptoms in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolfsson R., Gottfries C. G., Nyström L., and Winblad B. (1981) Prevalence of dementia disorders in institutionalized Swedish old people, The work load imposed by caring for these patients. Acta. Psychiat. Scand. 62, 225–244.

    Article  Google Scholar 

  • American Psychiatric Association (1987) Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., rev. American Psychiatric Association, Washington, DC.

    Google Scholar 

  • Arnold S. E., Lee V. M. Y., Gur R. E., and Trojanowski J. Q. (1991) Abnormal expression of two micro-tubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc. Natl. Acad. Sci. USA 88, 10,850–10,854.

    CAS  Google Scholar 

  • Arnold S. E., Franz B. R., Gur R. C., Gur R. E., Shapiro R. M., Moberg P. J., et al. (1995) Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am. J. Psych. 152, 738–748.

    CAS  Google Scholar 

  • Basi G. S. (1987) Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell 49, 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Benes F. M. (1993) Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophr. Bull. 19, 537–549.

    PubMed  CAS  Google Scholar 

  • Benes F. M., Davidson J., and Bird E. D. (1986) Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch. Gen. Psychiatry 43, 31–35.

    PubMed  CAS  Google Scholar 

  • Benes F. M., Sorensen I., and Bird E. D. (1991a) Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr. Bull. 17, 597–608.

    PubMed  CAS  Google Scholar 

  • Benes F. M., McSparren J., Bird E. D., SanGiovanni J. P., and Vincent S. L. (1991b) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psych. 48, 996–1001.

    CAS  Google Scholar 

  • Benowitz L. I. and Routtenberg A. (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Benowitz L. I., Shashoua V. E., and Yoon M. (1981) Specific changes in rapidly transported proteins during regeneration of goldfish optic nerve. J. Neurosci. 1, 300–307.

    PubMed  CAS  Google Scholar 

  • Benowitz L. I., Perrone-Bizzozero N. I., Finklestein S. P., and Bird E. D. (1989) Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex. J. Neurosci. 9, 990–995.

    PubMed  CAS  Google Scholar 

  • Benowitz L. I., Rodriguez W. R., and Neve R. L. (1990) The pattern of GAP-43 immunostaining changes in the rat hippocampal formation during reactive synaptogenesis. Brain Res. Mol. Brain Res. 8, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Blennow K., Bogdanovic N., Alafuzoff I., Ekman R., and Davidsson P. (1996a) Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J. Neural. Transm. (P-D section) 103, 603–618.

    Article  PubMed  CAS  Google Scholar 

  • Blennow K., Davidsson P., Gottfries C. G., Ekman R., and Heilig M. (1996b) Synaptic degeneration in thalamus in schizophrenia. Lancet 348, 692,693.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanovic N., Davidsson P., Gottfries J., Volkman I., Winblad B., and Blennow K. (1999) Regional and cellular distribution of synaptic proteins in the normal human brain. Submitted.

  • Bogerts B. (1993). Recent advance in the neuropathology of schizophrenia. Schizophr. Bull. 19, 431–445.

    PubMed  CAS  Google Scholar 

  • Davidsson P., Jahn R., Bergquist J., Ekman R., and Blennow K. (1996) Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid: a new biochemical marker for synaptic pathology in Alzheimer’s disease? Mol. Chem. Neuropathol. 27, 195–210.

    Article  PubMed  CAS  Google Scholar 

  • De la Monte S. M., Federoff H. J., Ng S. C., Grabczyk E., and Fishman M. C. (1989) GAP-43 gene expression during development: persistence in a distinct set of neurons in the mature central nervous system. Dev. Brain Res. 46, 161–168.

    Article  Google Scholar 

  • Dolan R. J., Fletcher P., Frith C. D., Friston K. J., Frackowiak R. S., and Grasby P. M. (1995) Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 378, 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Eastwood S. L. and Harrison P. J. (1995) Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 69, 339–343.

    Article  PubMed  CAS  Google Scholar 

  • Falkai P. and Bogerts B. (1986) Cell loss in the hippocampus of schizophrenics. Eur. Arch. Psychiatr. Neurol. Sci. 236, 154–161.

    Article  CAS  Google Scholar 

  • Glantz L. A. and Lewis D. A. (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Arch. Gen. Psych. 54, 660–669.

    CAS  Google Scholar 

  • Goldsmith S. K. and Joyce J. N. (1995) Alterations in hippocampal mossy fiber pathway in schizophrenia and Alzheimer’s disease. Biol. Psych. 37, 122–126.

    Article  CAS  Google Scholar 

  • Granger B. (1996) Synaptogenesis and synaptic pruning: role in triggering schizophrenia. Presse Med. 25, 1595–1598.

    PubMed  CAS  Google Scholar 

  • Gur R. E. and Pearlson G. D. (1993) Neuroimaging in schizophrenia research. Schizophr. Bull. 19, 337–353.

    PubMed  CAS  Google Scholar 

  • Harrison P. J., Eastwood S. L., Esiri M. M., and Zaidel D. W. (1996) Cytoarchitectural hippocampal asymmetries in schizophrenia. Schizophr. Res. 18, 180.

    Article  Google Scholar 

  • Horn D. and Ruppin E. (1995) Compensatory mechanisms in an attractor neural network model of schizophrenia. Neural. Computation 7, 182–205.

    PubMed  CAS  Google Scholar 

  • Jeste D. V. and Lohr J. B. (1989) Hippocampal pathologic findings in schizophrenia: a morphometric study. Arch. Gen. Psychiatry 46, 1019–1024.

    PubMed  CAS  Google Scholar 

  • Lin L. H., Boch S., Carpenter K., Rose M., and Norden J. J. (1992) Synthesis and transport of GAP-43 in entorhinal cortex neurons and perforant pathway during lesion-induced sprouting and reactive synaptogenesis. Brain Res. Mol. Brain Res. 14, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Meiri K. F., Pfenninger K. H., and Willard M. B. (1986) Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend, is a component of growth cones and correspond to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc. Natl. Acad. Sci. USA 83, 3537–3541.

    Article  PubMed  CAS  Google Scholar 

  • Mercken M., Lübke U., Vandermeeren M., Gheuens J., and Oestreicher A. B. (1992) Immunocytochemical detection of the growth-associated protein B-50 by newly characterized monoclonal antibodies in human brain and muscle. J. Neurobiol. 23, 309–321.

    Article  PubMed  CAS  Google Scholar 

  • Moore R. Y. and Bernstein M. E. (1989) Synaptogenesis in the rat suprachiasmatic nucleus demonstrated by electron microscopy and synapsin I immunoreactivity. J. Neurosci. 9, 2151–2162.

    PubMed  CAS  Google Scholar 

  • Neve R. L. and Bear M. F. (1989) Visual experience regulates gene expression in the developing striate cortex. Proc. Natl. Acad. Sci. USA 86, 4781–4784.

    Article  PubMed  CAS  Google Scholar 

  • Noga J. T., Aylward E., Barta P. E., and Pearlson G. D. (1995) Cingulate gyrus in schizophrenic patients and normal volunteers. Psych. Res. 61, 201–208.

    Article  CAS  Google Scholar 

  • Olney J. W. and Farber N. B. (1995) Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psych. 52, 998–1007.

    CAS  Google Scholar 

  • Pakkenberg B. (1987) Post-mortem study of chronic schizophrenic brains. Br. J. Psych. 151, 744–752.

    Article  CAS  Google Scholar 

  • Perrone-Bizzozero N. I., Sower A. C., Bird E. D., Benowitz L. I., Ivins K. J., and Neve R. L. (1996) Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc. Natl. Acad. Sci. USA 93, 14,182–14,187.

    Article  CAS  Google Scholar 

  • Selemon L. D., Rajkowska G., and Goldman-Rakic P. S. (1995) Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch. Gen. Psych. 52, 805–818.

    CAS  Google Scholar 

  • Skene J. H. P. and Willard M. (1981) Changes in axonally transported proteins during axon regeneration and toad retinal ganglion cells. J. Cell. Biol. 89, 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Sower A. C., Bird E. D., and Perrone-Bizzozero N. I. (1995) Increased levels of GAP-43 protein in schizophrenic brain tissues demonstrated by a novel immuno-detection method. Mol. Chem. Neuropathol. 24, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Stevens J. R. (1992) Abnormal reinnervation as a basis for schizophrenia: a hypothesis. Arch. Gen. Psych. 49, 238–243.

    CAS  Google Scholar 

  • Terry R. D., Masliah E., Salmon D. P., Butters N., DeTeresa R., Hill R., et al. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger D. R. (1995) From neuropathology to neurodevelopment. Lancet 346, 552–557.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blennow, K., Bogdanovic, N., Gottfries, CG. et al. The growth-associated protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in schizophrenia. J Mol Neurosci 13, 101–109 (1999). https://doi.org/10.1385/JMN:13:1-2:101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:13:1-2:101

Index Entries

Navigation